Abstract. Linked Open Data has been recognized as a valuable source for background information in data mining. However, most data mining tools require features in propositional form, i.e., a vector of nominal or numerical features associated with an instance, while Linked Open Data sources are graphs by nature. In this paper, we present RDF2Vec, an approach that uses language modeling approaches for unsupervised feature extraction from sequences of words, and adapts them to RDF graphs. We generate sequences by leveraging local information from graph substructures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels and graph walks, and learn latent numerical representations of entities in RDF graphs. Our evaluation shows that such vector representations outperform existing techniques for the propositionalization of RDF graphs on a variety of different predictive machine learning tasks, and that feature vector representations of general knowledge graphs such as DBpedia and Wikidata can be easily reused for different tasks.
Linked Open Data has been recognized as a valuable source for background information in many data mining and information retrieval tasks. However, most of the existing tools require features in propositional form, i.e., a vector of nominal or numerical features associated with an instance, while Linked Open Data sources are graphs by nature. In this paper, we present RDF2Vec, an approach that uses language modeling approaches for unsupervised feature extraction from sequences of words, and adapts them to RDF graphs. We generate sequences by leveraging local information from graph sub-structures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels and graph walks, and learn latent numerical representations of entities in RDF graphs. We evaluate our approach on three different tasks: (i) standard machine learning tasks, (ii) entity and document modeling, and (iii) content-based recommender systems. The evaluation shows that the proposed entity embeddings outperform existing techniques, and that pre-computed feature vector representations of general knowledge graphs such as DBpedia and Wikidata can be easily reused for different tasks.
a b s t r a c tData Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in that field are knowledge intensive and can often benefit from using additional knowledge from various sources. Therefore, many approaches have been proposed in this area that combine Semantic Web data with the data mining and knowledge discovery process. This survey article gives a comprehensive overview of those approaches in different stages of the knowledge discovery process. As an example, we show how Linked Open Data can be used at various stages for building content-based recommender systems. The survey shows that, while there are numerous interesting research works performed, the full potential of the Semantic Web and Linked Open Data for data mining and KDD is still to be unlocked.
Abstract.Resource type: Datasets Permanent URL: http://w3id.org/sw4ml-datasets In the recent years, several approaches for machine learning on the Semantic Web have been proposed. However, no extensive comparisons between those approaches have been undertaken, in particular due to a lack of publicly available, acknowledged benchmark datasets. In this paper, we present a collection of 22 benchmark datasets of different sizes.Such a collection of datasets can be used to conduct quantitative performance testing and systematic comparisons of approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.