We study the translocation process of a vesicle through a hole in a solid membrane separating two chambers by using the Onsager principle. By considering the stretching energy of the vesicle and the driving force due to pressure difference, we derive a free energy that shows clearly a decrease in the energy barrier as the pressure difference between two sides of the membrane increases. The difference between the reaction path obtained from the string method and the actual kinetic paths obtained from the Onsager principle is discussed when the friction parameter changes. The translocation time decreases as the pressure difference increases or the initial size of the vesicle decreases.
We formulate a theory of electrostatic interactions in lipid bilayer membranes where both monolayer leaflets contain dissociable moieties that are subject to charge regulation. We specifically investigate the coupling between...
Sakuma and Imai [Phys. Rev. Lett. 107, 198101 (2011)] established a temperature-controlled cyclic process for a model system of self-reproducing vesicles without feeding. The vesicle generates a smaller inclusion vesicle called “daughter vesicle” inside the original vesicle (we call this “mother vesicle”) and then the daughter vesicle is expelled through a small pore on the mother vesicle. This self-reproducing process is called birthing. In the present study, we present a theoretical model on the birthing process of a single, rigid daughter vesicle through a pore. By using a simple geometric picture, we derive the free energy constituting the material properties of the bending, stretching, and line tension moduli of the mother vesicle, as a function of the distance between the centers of the daughter and mother vesicles, and the size of the daughter vesicle. We see clearly the disappearance of the energy barrier by selecting appropriate moduli. The dynamics of the system is studied by employing the Onsager principle. The results indicate that translocation time decreases as the friction parameter decreases or the initial size of the daughter vesicle decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.