Recently, Normalized Full Gradient (NFG) method has widespread applications to natural potential fields, especially in gravity and magnetic. In this study, usage of NFG in Self-Potential (SP) data evaluation is tested. Results are compared to other SP interpretation methods. The NFG method is applied to synthetic and field SP data. As a consequence of application of the method to the anomalies of spherical, cylindrical and vertical sheet models, whose theoretical structures are explicit, the structures were found very close to their actual locations. In order to see the capability of the method in detecting the number of sources, NFG method was applied to different spherical models at different depths and locations. The least-squares inverse solution was applied to the same models and NFG method was found more powerful in detecting model structure. Sensitivity of NFG method for application to noisy data is also tested. An anomaly is generated by adding a random noise to two close sphere SP anomalies. The method seems to work for the two close spheres at high S/N ratio. Then, NFG method was applied to two field examples. The first one is the cross section taken from the SP anomaly map of the Ergani-Süleymanköy (Turkey) copper mine. The depth of the mineral deposit at that site was found about 38 m from the ground level. This result is well matched to previous studies. NFG was also applied to SP data from Seferihisar Izmir (Western Turkey) geothermal field and the location of the point source was determined. The field data of this site have already been modeled by the thermoelectric source (coupling) solution method. When these two methods are compared, they seem to support each other. It is concluded that the NFG method works perfectly when the structure model is simple. It is observed that natural potential sources close to earth's surface are identified by the method more accurately at greater harmonics, while deep sources are identified at lesser harmonics. It produces reasonable results for noisy multi-source models than the other parameter identification methods (inverse solution, power spectrum, etc.).
The monitoring of gravity changes in a region enables the investigation of regional structural elements depending upon the changes in load compensation. This method, preferred in recent years, has yielded good results from different parts of the world for determination of the deformation at fields. With the addition of GPS/GNSS monitoring to microgravity studies, the mass changes within the crust in vertical directional movements of a region can be estimated. During GPS/GNSS monitoring and microgravity studies, it was found that the behaviour of vertical directions of Izmir and the surrounding areas, indicate an active tectonic regime and high seismic activity, especially since 2000. As a result, regions considered to have a mass change in vertical direction were determined by 3-year measurements and it was found that they were consistently highly seismic.
Changes in the size and depth of sources greatly affect self-potential (SP) anomalies. Therefore, it is important to determine the location of the source accurately. In the present study, applications of the normalized full gradient (NFG) method and Euler deconvolution (EUD) were described to determine the location of the sphere-like SP body as complementary approaches to other optimization algorithms. The NFG and EUD methods were tested on synthetic, noise-free, and noisy anomalies caused by sphere-like models in two-dimensional (2D) and three-dimensional (3D) cases. Subsequently, the methods were applied to real field data. The importance of the present study lies in the fact that it is the first 3D application of these methods to the SP anomaly caused by the sphere-like model in the literature. In order to determine the optimum harmonic number in the NFG method, a new criterion was used instead of the usual trial-and-error method, providing more reliable selection possibilities. In a similar way, average values were used to determine the window size accurately in the EUD method. The test results of the synthetic and real field models were satisfactory. They showed that both methods are applicable to determine the location of sphere-like structures, such as ore deposits, in self-potential surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.