Alaska encompasses several climate types because of its vast size, high-latitude location, proximity to oceans, and complex topography. There is a great need to understand how climate varies regionally for climatic research and forecasting applications. Although climate-type zones have been established for Alaska on the basis of seasonal climatological mean behavior, there has been little attempt to construct climate divisions that identify regions with consistently homogeneous climatic variability. In this study, cluster analysis was applied to monthly-average temperature data from 1977 to 2010 at a robust set of weather stations to develop climate divisions for the state. Mean-adjusted Advanced Very High Resolution Radiometer surface temperature estimates were employed to fill in missing temperature data when possible. Thirteen climate divisions were identified on the basis of the cluster analysis and were subsequently refined using local expert knowledge. Divisional boundary lines were drawn that encompass the grouped stations by following major surrounding topographic boundaries. Correlation analysis between station and gridded downscaled temperature and precipitation data supported the division placement and boundaries. The new divisions north of the Alaska Range were the North Slope, West Coast, Central Interior, Northeast Interior, and Northwest Interior. Divisions south of the Alaska Range were Cook Inlet, Bristol Bay, Aleutians, Northeast Gulf, Northwest Gulf, North Panhandle, Central Panhandle, and South Panhandle. Correlations with various Pacific Ocean and Arctic climatic teleconnection indices showed numerous significant relationships between seasonal division average temperature and the Arctic Oscillation, Pacific-North American pattern, North Pacific index, and Pacific decadal oscillation.
By extending the record of Alaskan divisional temperature and precipitation back in time, regional variations and trends of temperature and precipitation over 1920-2012 are documented. The use of the divisional framework highlights the greater spatial coherence of temperature variations relative to precipitation variations.The divisional time series of temperature are characterized by large interannual variability superimposed upon low-frequency variability, as well as by an underlying trend. Low-frequency variability corresponding to the Pacific decadal oscillation (PDO) includes Alaska's generally warm period of the 1920s and 1930s, a cold period from the late 1940s through the mid-1970s, a warm period from the late 1970s through the early 2000s, and a cooler period in the most recent decade. An exception to the cooling of the past decade is the North Slope climate division, which has continued to warm. There has been a gradual upward trend of Alaskan temperatures relative to the PDO since 1920, resulting in a statewide average warming of about 18C.In contrast to temperature, variations of precipitation are less consistent across climate divisions and have much less multidecadal character. Thirty-year trends of both variables are highly sensitive to the choice of the subperiod within the overall 93-yr period. The trends also vary seasonally, with winter and spring contributing the most to the annual trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.