Cytoplasmic dynein is a homodimeric AAA+ motor that transports a multitude of cargos toward the microtubule minus end. How the two catalytic head domains interact and move relative to each other during processive movement is unclear. Here, we tracked the relative positions of both heads with nanometer precision and directly observed the heads moving independently along the microtubule. The heads remained widely separated, and their stepping behavior varied as a function of interhead separation. One active head was sufficient for processive movement, and an active head could drag an inactive partner head forward. Thus, dynein moves processively without interhead coordination, a mechanism fundamentally distinct from the hand-over-hand stepping of kinesin and myosin.
A filamentous cytoskeleton largely governs the physical shape and mechanical properties of eukaryotic cells. In bacteria, proteins homologous to all three classes of eukaryotic cytoskeletal filaments have recently been discovered. These proteins are essential for the maintenance of bacterial cell shape and have been shown to guide the localization of key cell-wall-modifying enzymes. However, whether the bacterial cytoskeleton is stiff enough to affect the overall mechanical rigidity of a cell has not been probed. Here, we used an optical trap to measure the bending rigidity of live Escherichia coli cells. We find that the actin-homolog MreB contributes nearly as much to the stiffness of a cell as the peptidoglycan cell wall. By quantitatively modeling these measurements, our data indicate that the MreB is rigidly linked to the cell wall, increasing the mechanical stiffness of the overall system. These data are the first evidence that the bacterial cytoskeleton contributes to the mechanical integrity of a cell in much the same way as it does in eukaryotes.optical trapping | Escherichia coli | MreB
Complex spatial and temporal patterns of gene expression underlie embryo differentiation, yet methods do not yet exist for the efficient genome-wide determination of spatial expression patterns during development. In situ imaging of transcripts and proteins is the gold-standard, but it is difficult and time consuming to apply to an entire genome, even when highly automated. Sequencing, in contrast, is fast and genome-wide, but is generally applied to homogenized tissues, thereby discarding spatial information. To take advantage of the efficiency and comprehensiveness of sequencing while retaining spatial information, we cryosectioned individual blastoderm stage Drosophila melanogaster embryos along the anterior-posterior axis and developed methods to reliably sequence the mRNA isolated from each 25 µm slice. The spatial patterns of gene expression we infer closely match patterns previously determined by in situ hybridization and microscopy. We applied this method to generate a genome-wide timecourse of spatial gene expression from shortly after fertilization through gastrulation. We identified numerous genes with spatial patterns that have not yet been described in the several ongoing systematic in situ based projects. This simple experiment demonstrates the potential for combining careful anatomical dissection with high-throughput sequencing to obtain spatially resolved gene expression on a genome-wide scale.
Summary Reproductive isolation is a key component of speciation. In many insects, a major driver of this isolation is cuticular hydrocarbon pheromones, which help to identify potential intraspecific mates [1–3]. When the distributions of related species overlap, there may be strong selection on mate choice for intraspecific partners [4–9], since interspecific hybridization carries significant fitness costs [10]. Drosophila has been a key model for the investigation of reproductive isolation; while both male and female mate choice have been extensively investigated [6,11–16], the genes underlying species recognition remain largely unknown. To explore the molecular mechanisms underlying Drosophila speciation, we measured tissue-specific cis-regulatory divergence using RNA-seq in D. simulans × D. sechellia hybrids. By focusing on cis-regulatory changes specific to female oenocytes, the tissue that produces cuticular hydrocarbons, we rapidly identified a small number of candidate genes. We found that one of these, the fatty acid elongase eloF, broadly affects the hydrocarbons present on D. sechellia and D. melanogaster females as well as the propensity of D. simulans males to mate with them. Therefore, cis-regulatory changes in eloF may be a major driver in the sexual isolation of D. simulans from multiple other species. Our RNA-seq approach proved to be far more efficient than QTL mapping in identifying candidate genes; the same framework can be used to pinpoint candidate drivers of cis-regulatory divergence in traits differing between any interfertile species.
Genome-wide association studies (GWAS) are a powerful approach for connecting genotype to phenotype. Most GWAS hits are located in cis-regulatory regions, but the underlying causal variants and their molecular mechanisms remain unknown. To better understand human cis-regulatory variation, we mapped quantitative trait loci for chromatin accessibility (caQTLs)—a key step in cis-regulation—in 1000 individuals from 10 diverse populations. Most caQTLs were shared across populations, allowing us to leverage the genetic diversity to fine-map candidate causal regulatory variants, several thousand of which have been previously implicated in GWAS. In addition, many caQTLs that affect the expression of distal genes also alter the landscape of long-range chromosomal interactions, suggesting a mechanism for long-range expression QTLs. In sum, our results show that molecular QTL mapping integrated across diverse populations provides a high-resolution view of how worldwide human genetic variation affects chromatin accessibility, gene expression, and phenotype.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.