The underlying theme of this Critical Review is the relationship between molecular structure and liquid crystalline behaviour in a class of materials referred to as liquid crystal oligomers. For the purposes of this review, a liquid crystal oligomer will be defined as consisting of molecules composed of semi-rigid mesogenic units connected via flexible spacers. Much of the review will be devoted to structure-property relationships in the simplest oligomers, namely dimers, in which just two mesogenic units are connected by a single spacer. Along the way we will see how this molecular architecture has been exploited to address issues in a range of quite different areas and has given rise to potential applications for these materials. On the whole, only compounds in which the mesogenic units are linked essentially in a linear fashion will be considered while structures such as liquid crystal dendrimers and tetrapodes fall outside the scope of this review. The review will be of interest not only to scientists working directly in this area but in particular to those interested in understanding the relationships between structure and properties in polymers, and those designing materials for new applications.
A range of symmetric liquid crystal dimers which diOE er in the nature of the link, either ether or methylene, between the spacer and mesogenic units has been prepared and their transitional properties characterized. The nematic-isotropic transition temperature, T NI , and the associated entropy change, DS NI /R, are sensitive to the chemical nature of this link. Speci cally, T NI falls on replacing ether links with methylene links for both odd and even members although this reduction is more pronounced for odd members. In comparison, DS NI /R increases on changing ether links for methylene links for even dimers, but decreases for odd-membered dimers. These observations are completely in accord with the predictions of a model developed by Luckhurst and co-workers in which the diOE erence between the ether-linked and methylenelinked dimers rests exclusively in their shapes. Furthermore, the highly non-linear pentamethylenelinked dimers show a greater tendency to exhibit smectic behaviour; this is interpreted in terms of molecular packing giving rise to an alternating smectic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.