We report herein the synthesis and full characterization of the donor-free Lewis superacids Al(OR(F))(3) with OR(F) = OC(CF(3))(3) (1) and OC(C(5)F(10))C(6)F(5) (2), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2-F(2)C(6)H(4), and SO(2), as well as the internal C-F activation pathway of 1 leading to Al(2)(F)(OR(F))(5) (4) and trimeric [FAl(OR(F))(2)](3) (5, OR(F) = OC(CF(3))(3)). Insights have been gained from NMR studies, single-crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl-Al(OR(F))(3)](-) anions, for example, by hydride or alkyl abstraction reactions.
The synthesis of novel bis(amidinate) silicon and germanium complexes is described. The reaction of two equiv. of [MeC(NiPr)2]Li · THF (1) with SiCl4, GeCl4 or GeCl2·dioxane affords [MeC(NiPr)2]2SiCl2 (2), [MeC(NiPr)2]2GeCl2 (3) and [MeC(NiPr)2]2Ge (4), respectively. The complexes 2 and 4 have been structurally characterized. The crystallographic results confirm a bidentate coordination of the amidinate ligands at the Si/Ge center, as indicated by spectroscopic studies.
Bulk protonated mesitylene, toluene, and benzene bromoaluminate salts were stabilized and characterized in the superacidic system HBr/n AlBr3 with NMR spectroscopy and X-ray analysis of [HC6 H3 (CH3 )3 ](+) [AlBr4 ](-) (1), [HC6 H5 (CH3 )](+) [AlBr4 ](-) (2), and [C6 H7 ](+) [Al2 Br7 ](-) ⋅C6 H6 (3). Protonation attempts in bromoaluminate ILs led to a complete protonation of mesitylene, and a protonation degree of up to 15 % for toluene in the IL BMP(+) [Al2 Br7 ](-) . Benzene could only be protonated in the more acidic IL BMP(+) [Al3 Br10 ](-) , with a degree of 25 %. Protonation attempts on aromatics provide evidence that the bromoaluminate ILs tolerate superacidic environments. On the basis of the absolute Brønsted acidity scale, quantum chemical calculations confirmed the superacidic properties, and rank the acidities in ILs down to a pHabs value of 164 with an error of less than one pH unit compared with experimental findings. The neat AlBr3 /HBr system even may reach acidities down to pHabs 163.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.