A three-stage Yb-fiber amplifier emitted 1.43 kW of single-mode power when seeded with a 25 GHz linewidth master oscillator (MO). The amplified output was polarization stabilized and phase locked using active heterodyne phase control. A low-power sample of the output beam was coherently combined to a second fiber amplifier with 90% visibility. The measured combining efficiency agreed with estimated decoherence effects from fiber nonlinearity, linewidth, and phase-locking accuracy. This is the highest-power fiber laser that has been coherently locked using any method that allows brightness scaling.
A diffractive optical element (DOE) is used as a beam combiner for an actively phase-locked array of fiber lasers. Use of a DOE eliminates the far-field sidelobes and the accompanying loss of beam quality typically observed in tiled coherent laser arrays. Using this technique, we demonstrated coherent combination of five fiber lasers with 91% efficiency and M2=1.04. Combination efficiency and phase locking is robust even with large amplitude and phase fluctuations on the input laser array elements. Calculations and power handling measurements suggest that this approach can scale to both high channel counts and high powers.
We show that the electric-field-induced reversal of the magnetic order parameter in multiferroic MnWO 4 occurs on the time scale of milliseconds. Throughout the switching process the magnetic order and the magnetically induced electric polarization remain rigidly coupled. The temporal progression of the domain structure was imaged with nanosecond resolution by an electrical-pump-optical-probe technique using optical second harmonic generation. These nonequilibrium domain states significantly differ from the quasi-static domain reversal. A qualitative model gives an estimate of why the magnetoelectric order-parameter reversal in the magnetically induced ferroelectrics is not inherently ultrafast.
Five 500 W fiber amplifiers were coherently combined using a diffractive optical element combiner, generating a 1.93 kW beam whose M(2)=1.1 beam quality exceeded that of the inputs. Combining efficiency near 90% at low powers degraded to 79% at full power owing to thermal expansion of the fiber tip array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.