Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids thus fail to reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions are controlled and most terrestrial species reside. Here we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0-5 and 5-15 cm depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all of the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding 2 m gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (3.6 ± 2.3°C warmer than gridded air temperature), whereas soils in warm and humid environments are on average slightly cooler (0.7 ± 2.3°C cooler). The observed substantial and biome-specific offsets underpin that the projected impacts of climate and climate change on biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining global gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Research in environmental science relies heavily on global climatic grids derived from estimates of air temperature at around 2 meter above ground1-3. These climatic grids however fail to reflect conditions near and below the soil surface, where critical ecosystem functions such as soil carbon storage are controlled and most biodiversity resides4-8. By using soil temperature time series from over 8500 locations across all of the world’s terrestrial biomes4, we derived global maps of soil temperature-related variables at 1 km resolution for the 0–5 and 5–15 cm depth horizons. Based on these maps, we show that mean annual soil temperature differs markedly from the corresponding 2 m gridded air temperature, by up to 10°C, with substantial variation across biomes and seasons. Soils in cold and/or dry biomes are annually substantially warmer (3.6°C ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are slightly cooler (0.7 ± 2.3°C). As a result, annual soil temperature varies less (by 17%) across the globe than air temperature. The effect of macroclimatic conditions on the difference between soil and air temperature highlights the importance of considering that macroclimate warming may not result in the same level of soil temperature warming. Similarly, changes in precipitation could alter the relationship between soil and air temperature, with implications for soil-atmosphere feedbacks9. Our results underpin that the impacts of climate and climate change on biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments.
Abstract. Lichen heaths are declining in abundance in alpine and Arctic areas partly due to an increasing competition with shrubs. This shift in vegetation types might have important consequences for the microclimate and climate on a larger scale. The aim of our study is to measure the difference in microclimatic conditions between lichen heaths and shrub vegetation during the growing season. With a paired plot design, we measured the net radiation, soil heat flux, soil temperature and soil moisture on an alpine mountain area in southern Norway during the summer of 2018 and 2019. We determined that the daily net radiation of lichens was on average 3.15 MJ (26 %) lower than for shrubs during the growing season. This was mainly due to a higher albedo of the lichen heaths but also due to a larger longwave radiation loss. Subsequently, we estimate that a shift from a lichen heath to shrub vegetation leads to an average increase in atmospheric heating of 3.35 MJ d−1 during the growing season. Surprisingly, the soil heat flux and soil temperature were higher below lichens than below shrubs during days with high air temperatures. This implies that the relatively high albedo of lichens does not lead to a cooler soil compared to shrubs during the growing season. We predict that the thicker litter layer, the presence of soil shading and a higher evapotranspiration rate at shrub vegetation are far more important factors in explaining the variation in soil temperature between lichens and shrubs. Our study shows that a shift from lichen heaths to shrub vegetation in alpine and Arctic areas will lead to atmospheric heating, but it has a cooling effect on the subsurface during the growing season, especially when air temperatures are relatively high.
Global warming causes the replacement of lichens by shrubs in alpine and Arctic ecosystems. Since shrubs have lower albedo than lichens, this shrub encroachment can lead to a positive climatic feedback, resulting in higher temperatures in the surroundings. Therefore, gaining knowledge on the surface albedo of shrubs and lichens is important. Environmental factors also influence the surface albedo, but have often been neglected, potentially leading to biased results. In an experimental setup, we analyzed albedos of the lichen species Cladonia stellaris, Flavocetraria nivalis and Cetraria islandica, and how albedo changes with a stepwise replacement by the dwarf shrub Empetrum nigrum. Albedo was measured with radiometers in a paired set up. By setting certain environmental variables and species composition (monocultures) to be constant, we quantified the impact of environmental factors such as cloud cover, aspect and zenith angle on the surface albedo of two lichen species. Surface albedo (mean values ± SD) differed between C. islandica (0.155 ± 0.015), C. stellaris (0.364 ± 0.019), F. nivalis (0.350 ± 0.022) and E. nigrum (0.154 ± 0.016), and an increase in shrub cover at the expense of lichen cover led to a corresponding decrease in albedo. A 0.6 reduction in clearness index (more clouds) produced a 0.054 albedo decline. On the north‐facing aspect, albedo was 0.023 lower than on the south‐facing aspect. Albedo increased by 0.032 with an increase in zenith angle of 15°. Albedo variations caused by these studied environmental factors significantly affect the radiation budget of alpine and Arctic vegetation. We therefore stress the importance of considering environmental factors when surface albedos are estimated. Likewise, our species‐specific measurements can be a basis for further studies of the impact of climate change on alpine and Arctic vegetation and species‐related feedback mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.