AimsTo assess the tolerability of initiating/uptitrating sacubitril/valsartan (LCZ696) from 50 to 200 mg twice daily (target dose) over 3 and 6 weeks in heart failure (HF) patients (ejection fraction ≤35%).Methods and resultsA 5‐day open‐label run‐in (sacubitril/valsartan 50 mg twice daily) preceded an 11‐week, double‐blind, randomization period [100 mg twice daily for 2 weeks followed by 200 mg twice daily (‘condensed’ regimen) vs. 50 mg twice daily for 2 weeks, 100 mg twice daily for 3 weeks, followed by 200 mg twice daily (‘conservative’ regimen)]. Patients were stratified by pre‐study dose of angiotensin‐converting enzyme inhibitor/angiotensin‐receptor blocker (ACEI/ARB; low‐dose stratum included ACEI/ARB‐naïve patients). Of 540 patients entering run‐in, 498 (92%) were randomized and 429 (86.1% of randomized) completed the study. Pre‐defined tolerability criteria were hypotension, renal dysfunction and hyperkalaemia; and adjudicated angioedema, which occurred in (‘condensed’ vs. ‘conservative’) 9.7% vs. 8.4% (P = 0.570), 7.3% vs. 7.6% (P = 0.990), 7.7% vs. 4.4% (P = 0.114), and 0.0% vs. 0.8% of patients, respectively. Corresponding proportions for pre‐defined systolic blood pressure <95 mmHg, serum potassium >5.5 mmol/L, and serum creatinine >3.0 mg/dL were 8.9% vs. 5.2% (P = 0.102), 7.3% vs. 4.0% (P = 0.097), and 0.4% vs. 0%, respectively. In total, 378 (76%) patients achieved and maintained sacubitril/valsartan 200 mg twice daily without dose interruption/down‐titration over 12 weeks (77.8% vs. 84.3% for ‘condensed’ vs. ‘conservative’; P = 0.078). Rates by ACEI/ARB pre‐study dose stratification were 82.6% vs. 83.8% (P = 0.783) for high‐dose/‘condensed’ vs. high‐dose/‘conservative’ and 84.9% vs. 73.6% (P = 0.030) for low‐dose/‘conservative’ vs. low‐dose/‘condensed’.ConclusionsInitiation/uptitration of sacubitril/valsartan from 50 to 200 mg twice daily over 3 or 6 weeks had a tolerability profile in line with other HF treatments. More gradual initiation/uptitration maximized attainment of target dose in the low‐dose ACEI/ARB group.
AimsCardiopoietic cells, produced through cardiogenic conditioning of patients’ mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort.Methods and resultsThis multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein–Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann–Whitney estimator 0.54, 95% confidence interval [CI] 0.47–0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200–370 mL (60% of patients) (Mann–Whitney estimator 0.61, 95% CI 0.52–0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death.ConclusionThe primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted.
Background: Ischaemic preconditioning results in a reduction in ischaemic-reperfusion injury to the heart. This beneficial effect is seen both with direct local preconditioning of the myocardium and with remote preconditioning of easily accessible distant non-vital limb tissue. Ischaemic postconditioning with a comparable sequence of brief periods of local ischaemia, when applied immediately after the ischaemic insult, confers benefits similar to preconditioning. Objective: To test the hypothesis that limb ischaemia induces remote postconditioning and hence reduces experimental myocardial infarct size in a validated swine model of acute myocardial infarction. Methods: Acute myocardial infarction was induced in 24 pigs with 90 min balloon inflations of the left anterior descending coronary artery. Remote ischaemic postconditioning was induced in 12 of the pigs by four 5 min cycles of blood pressure cuff inflation applied to the lower limb immediately after the balloon deflation. Infarct size was assessed by measuring 72 h creatinine kinase release, MRI scan and immunohistochemical analysis. Results: Area under the curve of creatinine kinase release was significantly reduced in the postconditioning group compared with the control group with a 26% reduction in the infarct size (p,0.05). This was confirmed by MRI scanning and immunohistochemical analysis that revealed a 22% (p,0.05) and a 47.52% (p,0.01) relative reduction in the infarct size, respectively. Conclusion: Remote ischaemic postconditioning is a simple technique to reduce infarct size without the hazards and logistics of multiple coronary artery balloon inflations. This type of conditioning promises clear clinical potential.
Reperfusion injury occurs when ischaemic tissue is reperfused. It involves the generation and release of reactive oxygen that activates numerous signalling pathways and initiates cell death. Exposure of isolated cardiac myocytes to chronic hypoxia followed by reoxygenation results in the early activation of c-Jun N-terminal kinase (JNK) and death by apoptosis of approx. 30% of the myocytes. Although JNK activation has been described in a number of models of ischaemia/reperfusion, the contribution of JNK activation to cell fate has not been established. Here we report that the activation of JNK by reoxygenation correlates with myocyte survival. Transfection of myocytes with JNK pathway interfering plasmid vectors or infection with adenoviral vectors support the hypothesis that JNK is protective. Transfection or infection with JNK inhibitory mutants increased the rates of apoptosis by almost 2-fold compared with control cultures grown aerobically or subjected to hypoxia and reoxygenation. Caspase 9 activity, measured by LEHD cleavage, increased > 3-fold during reoxygenation and this activity was enhanced significantly at all times in cultures infected with dominant negative JNK adenovirus. Hypoxia—reoxygenation mediated a biphasic (2.6- and 2.9-fold) activation of p38 mitogen-activated protein kinase, as well as a small increase of tumour necrosis factor α (TNFα) secretion, but treatments with the p38 MAPK-specific inhibitor SB203580 or saturating levels of a TNFα-1 blocking antibody provided only partial protection against apoptosis. The results suggest that JNK activation is protective and that the pathway is largely independent of p38 MAPK or secreted TNFα.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.