Independent evidence from rocks, fossils, and genes converge on a cohesive narrative of isthmus formation in the Pliocene.
Calibration of nucleotide sequence divergence rates provides an important method by which to test many hypotheses of evolution. In the absence of an adequate fossil record, geological events, rather than the first appearances of sister taxa in the geological record, are often used to calibrate molecular clocks. The formation of the Isthmus of Panama, which isolated the tropical western Atlantic and eastern Pacific oceans, is one such event that is frequently used to infer rates of nucleotide sequence divergence. Isthmian calibrations assume that morphologically similar "geminate" species living now on either side of the isthmus were isolated geographically by the latest stages of seaway closure 3.1-3.5 MYA. Here, I have applied calibration dates from the fossil record to cytochrome c oxidase-1 (CO1) and nuclear histone-3 (H3) divergences among six pairs of geminates in the Arcidae to test this hypothesis. Analysis of CO1 first and third positions yield geminate divergences that predate final seaway closure, and on the basis of CO1 first positions, times for all six geminates are significantly greater than 3.5 Myr. H3 sequences produce much more recent geminate divergences, some that are younger than 3.1 Myr. But H3-derived estimates for all arcid geminates are not significantly different from both 0 and 15 Myr. According to CO1, one of the two most divergent pairs, Arca mutabilis and A. imbricata, split more than 30 MYA. This date is compatible with the fossil record, which indicates that these species were morphologically distinct at least 16-21 MYA. Across all CO1 nucleotide sites, divergence rates for arcids are slower than the rates reported for other taxa on the basis of isthmian calibrations, with the exception of rates determined from the least divergent species pair in larger surveys of multiple transisthmian pairs. Rate differences between arcids and some taxa may be real, but these data suggest that divergence rates can be greatly overestimated when dates corresponding to final closure of the Central American Seaway are used to calibrate the molecular clocks of marine organisms.
Approximately 20,000 years ago the last glacial maximum (LGM) radically altered the distributions of many Northern Hemisphere terrestrial organisms. Fewer studies describing the biogeographic responses of marine species to the LGM have been conducted, but existing genetic data from coastal marine species indicate that fewer taxa show clear signatures of post-LGM recolonization. We have assembled a mitochondrial DNA (mtDNA) data set for 14 co-distributed northeastern Pacific rocky-shore species from four phyla by combining new sequences from ten species with previously published sequences from eight species. Nuclear sequences from four species were retrieved from GenBank, plus we gathered new elongation factor 1-alpha sequences from the barnacle Balanus glandula. Results from demographic analyses of mtDNA for five (36%) species (Evasterias troschelii, Pisaster ochraceus, Littorina sitkana, L. scutulata, Xiphister mucosus) were consistent with large population expansions occurring near the LGM, a pattern expected if these species recently recolonized the region. However, seven (50%) species (Mytilus trossulus, M. californianus, B. glandula, S. cariosus, Patiria miniata, Katharina tunicata, X. atropurpureus) exhibited histories consistent with long-term stability in effective population size, a pattern indicative of regional persistence during the LGM. Two species of Nucella with significant mtDNA genetic structure showed spatially variable demographic histories. Multilocus analyses for five species were largely consistent with mtDNA: the majority of multilocus interpopulation divergence times significantly exceeded the LGM. Our results indicate that the LGM did not extirpate the majority of species in the northeastern Pacific; instead, regional persistence during the LGM appears a common biogeographic history for rocky-shore organisms in this region.
In marine environments, many species have apparently colonized high latitude regions following the last glacial maximum (LGM) yet lack a life-history stage, such as a free-living larva, that is clearly capable of long-distance dispersal. Two hypotheses can explain the modern high latitude distributions of these marine taxa: (1) survival in northern refugia during the LGM or (2) rapid post-glacial dispersal by nonlarval stages. To distinguish these two scenarios, I characterized the genetic structure of two closely related northeastern Pacific gastropods that lack planktonic larvae but which have distributions extending more than 1000 km north of the southern limit of glaciers at the LGM. Despite having identical larval dispersal potential, these closely related species exhibit fundamentally different patterns of genetic structure. In Nucella ostrina, haplotype diversity among northern populations (British Columbia and Alaska) is low, no pattern of isolation by distance exists and a coalescent-based model of population growth indicates that during the LGM population size was reduced to less than 35% of its current size. In the congeneric and often sympatric N. lamellosa, northern populations harbour a diversity of ancient private haplotypes, significant evidence of isolation by distance exists and regional subdivision was found between northern (Alaska) and southern (southern British Columbia, Washington and Oregon) populations. Estimates of coalescent parameters indicate only a modest reduction in population size during the LGM and that northern and southern populations of N. lamellosa split approximately 50 Kyr before the LGM. The patterns are consistent with the hypothesis that N. ostrina recently reinvaded the northeastern Pacific but N. lamellosa survived the LGM in a northern refuge. A comparison of similar studies in this region indicates that depleted levels of genetic variation at high latitudes--evidence suggestive of recent colonization from a southern refuge--is more common among intertidal species that live relatively high on the shore, where exposure times to cold stress in air are longer than for species living lower on the shore. These data suggest that for some faunas, ecological differences between taxa may be more important than larval dispersal potential in determining species' long-term biogeographical responses to climate change.
Any fish species that appears to be readily available in the marketplace will create an impression among the public that there is a plentiful supply of that fish in the sea, but this may belie the true state of the fisheries' stock. Here we use molecular genetic analysis to show that some three-quarters of the fish sold in the United States as 'red snapper'--the US Food and Drug Administration's legally designated common name for Lutjanus campechanus--belong to another species. Mislabelling to this extent not only defrauds consumers but could also adversely affect estimates of stock size if it influences the reporting of catch data that are used in fisheries management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.