When traveling in thin solution layers, autocatalytic chemical fronts may be deformed and accelerated by convective currents that develop because of density and surface tension gradients related to concentration and thermal gradients across the front. On earth, both buoyancy and Marangoni related flows can act in solution layers open to the air while only buoyancy effects operate in covered liquid layers. The respective effects of density and surface tension induced convective motions are analysed here by studying experimentally the propagation of autocatalytic fronts in uncovered and covered liquid layers during parabolic flights in which the gravity field is modulated periodically. We find that the velocity and deformation of the front are increased during hyper-gravity phases and reduced in the micro-gravity phase. The experimental results compare well with numerical simulations of the evolution of the concentration of the autocatalytic product coupled to the flow field dynamics described by Navier-Stokes equations.
A reactive interface in the form of an autocatalytic reaction front propagating in a bulk phase can generate a dynamic contact line upon reaching the free surface when a surface tension gradient builds up due to the change in chemical composition. Experiments in microgravity evidence the existence of a self-organized autonomous and localized coupling of a pure Marangoni flow along the surface with the reaction in the bulk. This dynamics results from the advancement of the contact line at the surface that acts as a moving source of the reaction, leading to the reorientation of the front propagation. Microgravity conditions allow one to isolate the transition regime during which the surface propagation is enhanced, whereas diffusion remains the main mode of transport in the bulk with negligible convective mixing, a regime typically concealed on Earth because of buoyancy-driven convection.
We study the effect of Marangoni flow on a dynamic contact line formed by a propagating reaction front and a liquid–air interface. The self-sustained iodate–arsenous acid reaction maintains the production of the weakly surface active iodine leading to an unbalanced surface force along the tip of the reaction front. The experiments, performed in microgravity to exclude the contribution of buoyancy, reveal that the fluid flow generated by the surface tension gradient is localized to the contact line. The penetration depth of the surface stress is measured as 1–2 mm; therefore, with greater fluid height the liquid advancement on the upper surface does not lead to enhanced mixing in the bulk. Because the propagation velocity of the reactive interface remains at that of reaction–diffusion, the leading edge consists of two straight lines; a tilted segment connects the contact line on the surface with the vertical segment on bottom. Modeling calculations of the reaction–diffusion–advection system in three dimensions reconstruct the experimental observations and along with the experiments validate a model based on geometric spreading. According to the calculated flow field, the direction of significant fluid flow follows the concentration gradients and hence coincides with the propagation of the reaction front, allowing only negligible transverse flow in the upper fluid layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.