BACKGROUND AND PURPOSE The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor.
EXPERIMENTAL APPROACH Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1‐mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild‐type or TRPV1−/− mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries.
KEY RESULTS Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca2+ in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK‐195 and JYL‐79) or were without effect (resiniferatoxin and JYL‐273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL‐1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation.
CONCLUSIONS AND IMPLICATIONS Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat.
The chiral monoaza-15-crown-5 lariat ether annelated to methyl-4,6-O-benzylidene-α-D-glucopyranoside has been applied as a phase-transfer catalyst in several Michael addition reactions under mild conditions affording the adducts with good to excellent enantioselectivities. In the addition of α-substituted diethyl malonates to trans-chalcones, the substituents of the reactants had a significant impact on the yield and enantioselectivity. Among the reactions of substituted diethyl malonates, that of diethyl-2-acetoxymalonate gave the best results (up to 97% ee). New phase-transfer-catalyzed cyclopropanation reactions (MIRC reactions) of a few enones were also developed using diethyl 2-bromomalonate as the nucleophile. The corresponding chiral cyclopropane derivatives were formed with enantioselectivities up to 92% from 2-benzylidenemalononitrile starting materials, in up to 60% enantiomeric excess using 2-benzylidene-1,3-diphenyl-1,3-propanediones, and in up to 88% optical purity applying trans-chalcones as the starting materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.