QUBIC, a specific and highly sensitive method for detection of protein–protein interactions, is used to identify new partners for the mitotic spindle components pericentrin and TACC3.
In-depth MS-based proteomics has necessitated fractionation of either proteins or peptides or both, often requiring considerable analysis time. Here we employ long liquid chromatography runs with high resolution coupled to an instrument with fast sequencing speed to investigate how much of the proteome is directly accessible to liquid chromatography-tandem MS characterization without any prefractionation steps. Triplicate single-run analyses identified 2990 yeast proteins, 68% of the total measured in a comprehensive yeast proteome. Among them, we covered the enzymes of the glycolysis and gluconeogenesis pathway targeted in a recent multiple reaction monitoring study. In a mammalian cell line, we identified 5376 proteins in a triplicate run, including representatives of 173 out of 200 KEGG metabolic and signaling pathways. Remarkably, the majority of proteins could be detected in the samples at sub-femtomole amounts and many in the low attomole range, in agreement with absolute abundance estimation done in previous works (Picotti et al. Cell, 138, 795–806, 2009). Our results imply an unexpectedly large dynamic range of the MS signal and sensitivity for liquid chromatography-tandem MS alone. With further development, single-run analysis has the potential to radically simplify many proteomic studies while maintaining a systems-wide view of the proteome.
The complex patterns of gene expression in metazoans are controlled by selective binding of transcription factors (TFs) to regulatory DNA. To improve the quantitative understanding of this process, we have developed a novel method that uses fluorescence anisotropy measurements in a controlled delivery system to determine TF-DNA binding energies in solution with high sensitivity and throughput. Owing to its large dynamic range, the method, named high performance fluorescence anisotropy (HiP-FA), allows for reliable quantification of both weak and strong binding; binding specificities are calculated on the basis of equilibrium constant measurements for mutational DNA variants. We determine the binding preference landscapes for 26 TFs and measure high absolute affinities, but mostly lower binding specificities than reported by other methods. The revised binding preferences give rise to improved predictions of in vivo TF occupancy and enhancer expression. Our approach provides a powerful new tool for the systems-biological analysis of gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.