Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL). The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL). VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv). scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa) and nanobody-based human heavy chain antibodies (75 kDa) can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb). Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo. Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo. Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics.
The aim of this study was to examine the prevalence, distribution, and topographic relationship of vascular 18 F-sodium fluoride uptake and arterial calcification in major arteries. Methods: Image data obtained from 75 patients undergoing whole-body 18 F-sodium fluoride PET/CT were evaluated retrospectively. Arterial radiotracer uptake and calcification were analyzed qualitatively and semiquantitatively. Results: 18 F-sodium fluoride uptake was observed at 254 sites in 57 (76%) of the 75 study patients, and calcification was observed at 1,930 sites in 63 (84%) of the patients. Colocalization of radiotracer accumulation and calcification could be observed in 223 areas of uptake (88%). However, only 12% of all arterial calcification sites showed increased radiotracer uptake. Conclusion: Our data indicate the feasibility of 18 F-sodium fluoride PET/CT for the imaging of mineral deposition in arterial wall alterations. 18 F-sodium fluoride PET/CT may provide relevant information about the morphologic and functional properties of calcified plaque.
ADP-ribosylation is a post-translational modification regulating protein function in which amino acid-specific ADP-ribosyltransferases (ARTs) transfer ADP-ribose from NAD onto specific target proteins. Attachment of the bulky ADP-ribose usually inactivates the target by sterically blocking its interaction with other proteins. P2X7, an ATP-gated ion channel with important roles in inflammation and cell death, in contrast, is activated by ADP-ribosylation. Here, we report the structural basis for this gating and present the first molecular model for the activation of a target protein by ADP-ribosylation. We demonstrate that the ecto-enzyme ART2.2 ADP-ribosylates P2X7 at arginine 125 in a prominent, cysteine-rich region at the interface of 2 receptor subunits. ADP-ribose shares an adenine-ribonucleotide moiety with ATP. Our results indicate that ADP-ribosylation of R125 positions this common chemical framework to fit into the nucleotide-binding site of P2X7 and thereby gates the channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.