We present a structure-aware technique to consolidate noisy data, which we use as a pre-process for standard clustering and dimensionality reduction. Our technique is related to mean shift, but instead of seeking density modes, it reveals and consolidates continuous high density structures such as curves and surface sheets in the underlying data while ignoring noise and outliers. We provide a theoretical analysis under a Gaussian noise model, and show that our approach significantly improves the performance of many non-linear dimensionality reduction and clustering algorithms in challenging scenarios.
Temporally consistent motion segmentation from RGB‐D videos is challenging because of the limitations of current RGB‐D sensors. We formulate segmentation as a motion assignment problem, where a motion is a sequence of rigid transformations through all frames of the input. We capture the quality of each potential assignment by defining an appropriate energy function that accounts for occlusions and a sensor‐specific noise model. To make energy minimization tractable, we work with a discrete set instead of the continuous, high dimensional space of motions, where the discrete motion set provides an upper bound for the original energy. We repeatedly minimize our energy, and in each step extend and refine the motion set to further lower the bound. A quantitative comparison to the current state of the art demonstrates the benefits of our approach in difficult scenarios.
In the current paper we consider the task of object classification in wireless sensor networks. Due to restricted battery capacity, minimizing the energy consumption is a main concern in wireless sensor networks. Assuming that each feature needed for classification is acquired by a sensor, a sequential classifier combination approach is proposed that aims at minimizing the number of features used for classification while maintaining a given correct classification rate. In experiments with data from the UCI repository, the feasibility of this approach is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.