Although human perception of food flavors involves integration of multiple sensory inputs, the most salient sensations are taste and olfaction. Ortho- and retronasal olfaction are particularly crucial to flavor because they provide the qualitative diversity so important to identify safe versus dangerous foods. Historically, flavor research has prioritized aroma volatiles present at levels exceeding the orthonasally measured odor threshold, ignoring the variation in the rate at which odor intensities grow above threshold. Furthermore, the chemical composition of a food in itself tells us very little about whether or not that food will be liked. Clearly, alternative approaches are needed to elucidate flavor chemistry. Here we use targeted metabolomics and natural variation in flavor-associated sugars, acids, and aroma volatiles to evaluate the chemistry of tomato fruits, creating a predictive and testable model of liking. This nontraditional approach provides novel insights into flavor chemistry, the interactions between taste and retronasal olfaction, and a paradigm for enhancing liking of natural products. Some of the most abundant volatiles do not contribute to consumer liking, whereas other less abundant ones do. Aroma volatiles make contributions to perceived sweetness independent of sugar concentration, suggesting a novel way to increase perception of sweetness without adding sugar.
Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of approximately 30 volatile compounds synthesized from a diverse set of precursors, including amino acids, lipids, and carotenoids. Some of these volatiles impart desirable qualities while others are negatively perceived. As a first step to identify the genes responsible for the synthesis of flavour-related chemicals, an attempt was made to identify loci that influence the chemical composition of ripe fruits. A genetically diverse but well-defined Solanum pennellii IL population was used. Because S. pennellii is a small green-fruited species, this population exhibits great biochemical diversity and is a rich source of genes affecting both fruit development and chemical composition. This population was used to identify multiple loci affecting the composition of chemicals related to flavour. Twenty-five loci were identified that are significantly altered in one or more of 23 different volatiles and four were altered in citric acid content. It was further shown that emissions of carotenoid-derived volatiles were directly correlated with the fruit carotenoid content. Linked molecular markers should be useful for breeding programmes aimed at improving fruit flavour. In the longer term, the genes responsible for controlling the levels of these chemicals will be important tools for understanding the complex interactions that ultimately integrate to provide the unique flavour of a tomato.
The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.