First-void urine usually contains exfoliated cells of the debris and mucus from the female genital organs and cervix, i.e., high concentration of human papillomavirus deoxyribonucleic acid (HPV DNA). We conducted a meta-analysis of published data and determined an accuracy of HPV detection in first-void urine compared to the women’s cervix. According to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we carried out a comprehensive literature search. Eligible articles published from 2011 until 2021 were gathered by searching Embase, PubMed and Cochrane Library Central databases. The patient selection, index test, standard test, and patient flow were the factors involved in quality evaluation. A meta-analysis of 15 studies (3412 women) based on 5054 potential records was conducted. Pooled sensitivity for high-risk HPV detection in urine of 78% (70–84%) and specificity of 89% (81–94%) were calculated. Any HPV detection in urine of 87% (74–94%) and 91% (83–96%) were pooled sensitivity and specificity, respectively. HPV 16 and 18 had a pooled sensitivity of 77% (76–77%) and specificity of 98% (98–98%). Meta-analysis indicated variations between the pooled specificities and sensitivities. In meta-regression analysis, a heterogeneity in accuracy by using covariates (bias in patient selection, purpose, sample timing, storage temperature and HPV detection method) were not detected. Our meta-analysis demonstrates the accuracy of detection of HPV in urine for the presence of cervical HPV. Although progress is continuously made in urinary HPV detection, further studies are needed to evaluate and to improve the accuracy of the first-void urine test in order to be comparable with other screening methods.
Human peripheral blood mononuclear cells (PBMCs) represent a sentinel blood sample which reacts to different pathophysiological stimuli in the form of immunological responses/immunophenotypic changes. The study of molecular content of PBMCs can provide better understanding of immune processes giving the possibility of monitoring the health conditions of the host organism. Proteomic analysis of PBMCs can achieve mentioned goal as important immune-related biomarkers are easily accessible for analysis. PBMCs have been gaining attention in different research areas including preclinical or clinical investigations. In this review, recent applications of proteomic analysis of PBMCs are described and discussed. Approaches are divided based on different proteomic workflows such as in-gel, in-solution and on-filter modes. The effect of various diseases such as autoimmune, cancer, neurodegenerative, viral, metabolic, and various immune stimulations such as radiation, vaccine, corticosteroids over PBMCs proteome, are described with emphasis on promising protein biomarker candidates.
BackgroundTransforming RhoA proteins (RHOA) and their downstream Diaphanous homolog 1 proteins (DIAPH1) or mDia1 participate in the regulation of actin cytoskeleton which plays critical role in cells, i.e., morphologic changes and apoptosis.MethodologyTo determine the cell viability the real time cell analysis (RTCA) and flow cytometry were used. To perform proteomic analysis, the label-free quantitative method and post-translation modification by the nano-HPLC and ESI-MS ion trap mass analyser were used.ResultsThe results of the cell viability showed an increase of dead cells (around 30 %) in MCF-7/DOX-1 (i.e., 1μM of doxorubicin was added to MCF-7/WT breast cancer cell line) compared to MCF-7/WT (control) after 24 h doxorubicin (DOX) treatment. The signalling pathway of the Regulation of actin cytoskeleton (p<0.0026) was determined, where RHOA and mDia1 proteins were up-regulated. Also, post-translational modification analysis of these proteins in MCF-7/DOX-1 cells revealed dysregulation of the actin cytoskeleton, specifically the collapse of actin stress fibbers due to phosphorylation of RHOA at serine 188 and mDia1 at serine 22, resulting in their deactivation and cell apoptosis.ConclusionThese results pointed to an assumed role of DOX to dysregulation of actin cytoskeleton and cell death.
The detected proteins may be capable of predicting response to DOX therapy. This is a key tool in the treatment of breast cancer, and the combination with vit C seems to be of particular interest due to the fact that it can potentiate anti-proliferative effect of DOX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.