In biomineralized tissues such as bone, the recurring structural motif at the supramolecular level is an anisotropic stiff inorganic component reinforcing the soft organic matrix. The high toughness and defect tolerance of natural biomineralized composites is believed to arise from these nanometer scale structural motifs. Specifically, load transfer in bone has been proposed to occur by a transfer of tensile strains between the stiff inorganic (mineral apatite) particles via shearing in the intervening soft organic (collagen) layers. This raises the question as to how and to what extent do the mineral particles and fibrils deform concurrently in response to tissue deformation. Here we show that both mineral nanoparticles and the enclosing mineralized fibril deform initially elastically, but to different degrees. Using in situ tensile testing with combined high brilliance synchrotron X-ray diffraction and scattering on the same sample, we show that tissue, fibrils, and mineral particles take up successively lower levels of strain, in a ratio of 12:5:2. The maximum strain seen in mineral nanoparticles (Ϸ0.15-0.20%) can reach up to twice the fracture strain calculated for bulk apatite. The results are consistent with a staggered model of load transfer in bone matrix, exemplifying the hierarchical nature of bone deformation. We believe this process results in a mechanism of fibril-matrix decoupling for protecting the brittle mineral phase in bone, while effectively redistributing the strain energy within the bone tissue.biomineralization ͉ deformation mechanisms ͉ in situ tensile testing ͉ micromechanics of bone ͉ synchrotron radiation
Muscle contraction is driven by the motor protein myosin II, which binds transiently to an actin filament, generates a unitary filament displacement or 'working stroke', then detaches and repeats the cycle. The stroke size has been measured previously using isolated myosin II molecules at low load, with rather variable results, but not at the higher loads that the motor works against during muscle contraction. Here we used a novel X-ray-interference technique to measure the working stroke of myosin II at constant load in an intact muscle cell, preserving the native structure and function of the motor. We show that the stroke is smaller and slower at higher load. The stroke size at low load is likely to be set by a structural limit; at higher loads, the motor detaches from actin before reaching this limit. The load dependence of the myosin II stroke is the primary molecular determinant of the mechanical performance and efficiency of skeletal muscle.
Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.
The technical features and performance of a new instrument for time-resolved ultra-small-angle and coherent X-ray scattering are presented. The instrument enables static and kinetic investigations from ångström to micrometre size scales and time resolution down to the sub-millisecond range. Applications include elucidation of static and transient hierarchical structures in soft matter and biophysical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.