Finding a good join order is crucial for query performance. In this paper, we introduce the Join Order Benchmark (JOB) and experimentally revisit the main components in the classic query optimizer architecture using a complex, real-world data set and realistic multi-join queries. We investigate the quality of industrial-strength cardinality estimators and find that all estimators routinely produce large errors. We further show that while estimates are essential for finding a good join order, query performance is unsatisfactory if the query engine relies too heavily on these estimates. Using another set of experiments that measure the impact of the cost model, we find that it has much less influence on query performance than the cardinality estimates. Finally, we investigate plan enumeration techniques comparing exhaustive dynamic programming with heuristic algorithms and find that exhaustive enumeration improves performance despite the sub-optimal cardinality estimates.
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a INformation SystemsSuper-scalar RAM-CPU cache compression M. Zukowski, S. Héman, N. Nes, P.A. Boncz Super-scalar RAM-CPU cache compression ABSTRACT High-performance data-intensive query processing tasks like OLAP, data mining or scientific data analysis can be severely I/O bound, even when high-end RAID storage systems are used. Compression can alleviate this bottleneck only if encoding and decoding speeds significantly exceed RAID I/O bandwidth. For this purpose, we propose three new versatile compression schemes (PDICT, PFOR, and PFOR-DELTA) that are specifically designed to extract maximum IPC from modern CPUs. We compare these algorithms with compression techniques used in (commercial) database and information retrieval systems. Our experiments on the MonetDB/X100 database system, using both DSM and PAX disk storage, show that these techniques strongly accelerate TPC-H performance to the point that the I/O bottleneck is eliminated. REPORT INS-E0511 JULY 2005 INS
The Linked Data Benchmark Council (LDBC) is now two years underway and has gathered strong industrial participation for its mission to establish benchmarks, and benchmarking practices for evaluating graph data management systems. The LDBC introduced a new choke-point driven methodology for developing benchmark workloads, which combines user input with input from expert systems architects, which we outline. This paper describes the LDBC Social Network Benchmark (SNB), and presents database benchmarking innovation in terms of graph query functionality tested, correlated graph generation techniques, as well as a scalable benchmark driver on a workload with complex graph dependencies. SNB has three query workloads under development: Interactive, Business Intelligence, and Graph Algorithms. We describe the SNB Interactive Workload in detail and illustrate the workload with some early results, as well as the goals for the two other workloads.
In this article, we survey recent research on column-oriented database systems, or column-stores, where each attribute of a table is stored in a separate file or region on storage. Such databases have seen a resurgence in recent years with a rise in interest in analytic queries that perform scans and aggregates over large portions of a few columns of a table. The main advantage of a column-store is that it can access just the columns needed to answer such queries. We specifically focus on three influential research prototypes, MonetDB [46], VectorWise [18], and C-Store [88]. These systems have formed the basis for several wellknown commercial column-store implementations. We describe their similarities and di erences and discuss their specific architectural features for compression, late materialization, join processing, vectorization and adaptive indexing (database cracking).
In the past decades, advances in speed of commodity CPUs have far outpaced advances in RAM latency. Main-memory access has therefore become a performance bottleneck for many computer applications; a phenomenon that is widely known as the "memory wall." In this paper, we report how research around the MonetDB database system has led to a redesign of database architecture in order to take advantage of modern hardware, and in particular to avoid hitting the memory wall. This encompasses (i) a redesign of the query execution model to better exploit pipelined CPU architectures and CPU instruction caches; (ii) the use of columnar rather than row-wise data storage to better exploit CPU data caches; (iii) the design of new cache-conscious query processing algorithms; and (iv) the design and automatic calibration of memory cost models to choose and tune these cache-conscious algorithms in the query optimizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.