The hydrothermal method enables the production of high-quality piezoelectric materials. In this study, we propose to irradiate the reaction solutions with ultrasonic power during the hydrothermal method to obtain a shorter reaction time and a smooth film surface. A high-pressure reaction container for the ultrasonic transducer was newly developed, and the ultrasonically-assisted hydrothermal method was examined by using this container. The effect of ultrasonic assist on the synthesis of lead-zirconate-titanate (PZT) thin films and (K,Na)NbO3 powders was verified. Thicker PZT film, thickness around 10 µm, could be obtained in one process, and (K,Na)NbO3 powder was synthesized in half the previous reaction time.
Direct ultrasound irradiation is advantageous for increasing the efficiency of the hydrothermal method, which can be used to produce piezoelectric thin films and lead-free piezoelectric ceramics. To apply ultrasound directly to the process, transducer prototypes were developed regarding the boundary conditions of the hydrothermal method. LiNbO3 and PIC 181 were proven to be feasible materials for high-temperature-resistant transducers (≥200 • C). The resistance of the transducer's horn against a corrosive mineralizer was achieved by using Hastelloy C-22. The efficiency of the ultrasound-assisted hydrothermal method depends on the generated sound field.The impedance and the sound field measurements have shown that the sound field depends on the filling level and on the position and design of the transducer.
To optimize the ultrasound irradiation for cavitation based ultrasound applications like sonochemistry or ultrasound cleaning, the correlation between cavitation intensity and the resulting effect on the process is of interest. Furthermore, changing conditions like temperature and pressure result in varying acoustic properties of the liquid. That might necessitate an adaption of the ultrasound irradiation. To detect such changes during operation, process monitoring is desired. Labor intensive processes, that might be carried out for several hours, also require process monitoring to increase their reliability by detection of changes or malfunctions during operation.In some applications cavitation detection and monitoring can be achieved by the application of sensors in the sound field. Though the application of sensors is possible, this necessitates modifications on the system and the sensor might disturb the sound field. In other applications harsh, process conditions prohibit the application of sensors in the sound field. Therefore alternative techniques for cavitation detection and monitoring are desired. The applicability of an external microphone and a self-sensing ultrasound transducer for cavitation detection were experimentally investigated. Both methods were found to be suitable and easily applicable.
(K,Na)NbO3 ceramics have attracted much attention as lead-free piezoelectric materials with high piezoelectric properties. High-quality (K,Na)NbO3 ceramics can be sintered using KNbO3 and NaNbO3 powders synthesized by a hydrothermal method. In this study, to enhance the quality factor of the ceramics, high-power ultrasonic irradiation was employed during the hydrothermal method, which led to a reduction in the particle size of the resultant powders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.