We derive and investigate lower bounds for the potential energy of finite spherical point sets (spherical codes). Our bounds are optimal in the following sense -they cannot be improved by employing polynomials of the same or lower degrees in the Delsarte-Yudin method. However, improvements are sometimes possible and we provide a necessary and sufficient condition for the existence of such better bounds. All our bounds can be obtained in a unified manner that does not depend on the potential function, provided the potential is given by an absolutely monotone function of the inner product between pairs of points, and this is the reason for us to call them universal. We also establish a criterion for a given code of dimension n and cardinality N not to be LP-universally optimal, e.g. we show that two codes conjectured by Ballinger et al to be universally optimal are not LP-universally optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.