Previous work on the coverage of mobile sensor networks focuses on algorithms to reposition sensors in order to achieve a static configuration with an enlarged covered area. In this paper, we study the dynamic aspects of the coverage of a mobile sensor network that depend on the process of sensor movement. As time goes by, a position is more likely to be covered; targets that might never be detected in a stationary sensor network can now be detected by moving sensors. We characterize the area coverage at specific time instants and during time intervals, as well as the time it takes to detect a randomly located stationary target. Our results show that sensor mobility can be exploited to compensate for the lack of sensors and improve network coverage. For mobile targets, we take a game theoretic approach and derive optimal mobility strategies for sensors and targets from their own perspectives.
Abstract. We consider the problem of simultaneous embedding of planar graphs. There are two variants of this problem, one in which the mapping between the vertices of the two graphs is given and another in which the mapping is not given. In particular, given a mapping, we show how to embed two paths on an n × n grid, and two caterpillar graphs on a 3n × 3n grid. We show that it is not always possible to simultaneously embed three paths. If the mapping is not given, we show that any number of outerplanar graphs can be embedded simultaneously on an O(n) × O(n) grid, and an outerplanar and general planar graph can be embedded simultaneously on an O(n 2 ) × O(n 2 ) grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.