The structure of contacts that mediate transmission has a pronounced effect on the outbreak dynamics of infectious disease and simulation models are powerful tools to inform policy decisions. Most simulation models of livestock disease spread rely to some degree on predictions of animal movement between holdings. Typically, movements are more common between nearby farms than between those located far away from each other. Here, we assessed spatiotemporal variation in such distance dependence of animal movement contacts from an epidemiological perspective. We evaluated and compared nine statistical models, applied to Swedish movement data from 2008. The models differed in at what level (if at all), they accounted for regional and/or seasonal heterogeneities in the distance dependence of the contacts. Using a kernel approach to describe how probability of contacts between farms changes with distance, we developed a hierarchical Bayesian framework and estimated parameters by using Markov Chain Monte Carlo techniques. We evaluated models by three different approaches of model selection. First, we used Deviance Information Criterion to evaluate their performance relative to each other. Secondly, we estimated the log predictive posterior distribution, this was also used to evaluate their relative performance. Thirdly, we performed posterior predictive checks by simulating movements with each of the parameterized models and evaluated their ability to recapture relevant summary statistics. Independent of selection criteria, we found that accounting for regional heterogeneity improved model accuracy. We also found that accounting for seasonal heterogeneity was beneficial, in terms of model accuracy, according to two of three methods used for model selection. Our results have important implications for livestock disease spread models where movement is an important risk factor for between farm transmission. We argue that modelers should refrain from using methods to simulate animal movements that assume the same pattern across all regions and seasons without explicitly testing for spatiotemporal variation.
Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power.
Live animal shipments are a potential route for transmitting animal diseases between holdings and are crucial when modelling spread of infectious diseases. Yet, complete contact networks are not available in all countries, including the USA. Here, we considered a 10% sample of Interstate Certificate of Veterinary Inspections from 1 year (2009). We focused on distance dependence in contacts and investigated how different functional forms affect estimates of unobserved intrastate shipments. To further enhance our predictions, we included responses from an expert elicitation survey about the proportion of shipments moving intrastate. We used hierarchical Bayesian modelling to estimate parameters describing the kernel and effects of expert data. We considered three functional forms of spatial kernels and the inclusion or exclusion of expert data. The resulting six models were ranked by widely applicable information criterion (WAIC) and deviance information criterion (DIC) and evaluated through within- and out-of-sample validation. We showed that predictions of intrastate shipments were mildly influenced by the functional form of the spatial kernel but kernel shapes that permitted a fat tail at large distances while maintaining a plateau-shaped behaviour at short distances better were preferred. Furthermore, our study showed that expert data may not guarantee enhanced predictions when expert estimates are disparate.
Transboundary animal diseases, such as foot and mouth disease (FMD) pose a significant and ongoing threat to global food security. Such diseases can producearge, spatially complex outbreaks. Mathematical models are often used to understand the spatio-temporal dynamics and create response plans for possible disease introductions. Model assumptions regarding transmission behavior of premises and movement patterns ofivestock directly impact our understanding of the ecological drivers of outbreaks and how to best control them. Here, we investigate the impact that these assumptions have on model predictions of FMD outbreaks in the U.S. using models ofivestock shipment networks and disease spread. We explore the impact of changing assumptions about premises transmission behavior, both by including within-herd dynamics, and by accounting for premises type and increasing the accuracy of shipment predictions. We find that the impact these assumptions have on outbreak predictions isess than the impact of the underlyingivestock demography, but that they are important for investigating some response objectives, such as the impact on trade. These results suggest that demography is a key ecological driver of outbreaks and is critical for making robust predictions but that understanding management objectives is also important when making choices about model assumptions.
Spread of transboundary animal diseases can have large impact on animal welfare, public health and economy. The effects of this include economic losses in terms of lower milk production, lower weight gain and culling due to welfare concerns. Disease preparedness is therefore important to be prepared for a possible outbreak, and policies need to be in place in order to take appropriate actions in case of an outbreak. It is also important to be able to take preventive actions to lessen the risk and size of an outbreak. For this, mathematical models are useful to describe the effects of an outbreak and to facilitate informed policy decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.