The spatial unity of self and body is challenged by various philosophical considerations and several phenomena, perhaps most notoriously the "out-of-body experience" (OBE) during which one's visual perspective and one's self are experienced to have departed from their habitual position within one's body. Although researchers started examining isolated aspects of the self, the neurocognitive processes of OBEs have not been investigated experimentally to further our understanding of the self. With the use of evoked potential mapping, we show the selective activation of the temporoparietal junction (TPJ) at 330 -400 ms after stimulus onset when healthy volunteers imagined themselves in the position and visual perspective that generally are reported by people experiencing spontaneous OBEs. Interference with the TPJ by transcranial magnetic stimulation (TMS) at this time impaired mental transformation of one's own body in healthy volunteers relative to TMS over a control site. No such TMS effect was observed for imagined spatial transformations of external objects, suggesting the selective implication of the TPJ in mental imagery of one's own body. Finally, in an epileptic patient with OBEs originating from the TPJ, we show partial activation of the seizure focus during mental transformations of her body and visual perspective mimicking her OBE perceptions. These results suggest that the TPJ is a crucial structure for the conscious experience of the normal self, mediating spatial unity of self and body, and also suggest that impaired processing at the TPJ may lead to pathological selves such as OBEs.
Decisions require careful weighing of the risks and benefits associated with a choice. Some people need to be offered large rewards to balance even minimal risks, whereas others take great risks in the hope for an only minimal benefit. We show here that risk-taking is a modifiable behavior that depends on right hemisphere prefrontal activity. We used low-frequency, repetitive transcranial magnetic stimulation to transiently disrupt left or right dorsolateral prefrontal cortex (DLPFC) function before applying a well known gambling paradigm that provides a measure of decision-making under risk. Individuals displayed significantly riskier decision-making after disruption of the right, but not the left, DLPFC. Our findings suggest that the right DLPFC plays a crucial role in the suppression of superficially seductive options. This confirms the asymmetric role of the prefrontal cortex in decision-making and reveals that this fundamental human capacity can be manipulated in normal subjects through cortical stimulation. The ability to modify risk-taking behavior may be translated into therapeutic interventions for disorders such as drug abuse or pathological gambling.
Spatial–numerical associations (SNAs) are prevalent yet their origin is poorly understood. We first consider the possible prime role of reading habits in shaping SNAs and list three observations that argue against a prominent influence of this role: (1) directional reading habits for numbers may conflict with those for non-numerical symbols, (2) short-term experimental manipulations can overrule the impact of decades of reading experience, (3) SNAs predate the acquisition of reading. As a promising alternative, we discuss behavioral, neuroscientific, and neuropsychological evidence in support of finger counting as the most likely initial determinant of SNAs. Implications of this “manumerical cognition” stance for the distinction between grounded, embodied, and situated cognition are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.