BackgroundHeterogeneous taxonomy of groin injuries in athletes adds confusion to this complicated area.AimThe ‘Doha agreement meeting on terminology and definitions in groin pain in athletes’ was convened to attempt to resolve this problem. Our aim was to agree on a standard terminology, along with accompanying definitions.MethodsA one-day agreement meeting was held on 4 November 2014. Twenty-four international experts from 14 different countries participated. Systematic reviews were performed to give an up-to-date synthesis of the current evidence on major topics concerning groin pain in athletes. All members participated in a Delphi questionnaire prior to the meeting.ResultsUnanimous agreement was reached on the following terminology. The classification system has three major subheadings of groin pain in athletes:1. Defined clinical entities for groin pain: Adductor-related, iliopsoas-related, inguinal-related and pubic-related groin pain.2. Hip-related groin pain.3. Other causes of groin pain in athletes.The definitions are included in this paper.ConclusionsThe Doha agreement meeting on terminology and definitions in groin pain in athletes reached a consensus on a clinically based taxonomy using three major categories. These definitions and terminology are based on history and physical examination to categorise athletes, making it simple and suitable for both clinical practice and research.
The aim of this 12-month prospective study was to investigate risk factors for stress fractures in a cohort of 53 female and 58 male track and field athletes, aged 17 to 26 years. Total bone mineral content, regional bone density, and soft tissue composition were measured using dual-energy x-ray absorptiometry and anthropometric techniques. Menstrual characteristics, current dietary intake, and training were assessed using questionnaires. A clinical biomechanical assessment was performed by a physical therapist. The incidence of stress fractures during the study was 21.1% with most injuries located in the tibia. Of the risk factors evaluated, none was able to predict the occurrence of stress fractures in men. However, in female athletes, significant risk factors included lower bone density, a history of menstrual disturbance, less lean mass in the lower limb, a discrepancy in leg length, and a lower fat diet. Multiple logistic regression revealed that age of menarche and calf girth were the best independent predictors of stress fractures in women. This bivariate model correctly assigned 80% of the female athletes into their respective stress fracture or nonstress fracture groups. These results suggest that it may be possible to identify female athletes most at risk for this overuse bone injury.
The incidence and distribution of stress fractures were evaluated prospectively over 12 months in 53 female and 58 male competitive track and field athletes (age range, 17 to 26 years). Twenty athletes sustained 26 stress fractures for an overall incidence rate of 21.1%. The incidence was 0.70 for the number of stress fractures per 1000 hours of training. No differences were observed between male and female rates (P > 0.05). Twenty-six stress fractures composed 20% of the 130 musculoskeletal injuries sustained during the study. Although there was no difference in stress fracture incidence among athletes competing in different events (P > 0.05), sprints, hurdles, and jumps were associated with a significantly greater number of foot fractures; middle- and long-distance running were associated with a greater number of long bone and pelvic fractures (P < 0.05). Overall, the most common sites of bone injuries were the tibia with 12 injuries (46%), followed by the navicular with 4 injuries (15%), and the fibula with 3 injuries (12%). The high incidence of stress fractures in our study suggests that risk factors in track and field athletes should be identified.
Preventing stress fractures requires knowledge of the risk factors that predispose to this injury. The aetiology of stress fractures is multifactorial, but methodological limitations and expediency often lead to research study designs that evaluate individual risk factors. Intrinsic risk factors include mechanical factors such as bone density, skeletal alignment and body size and composition, physiological factors such as bone turnover rate, flexibility, and muscular strength and endurance, as well as hormonal and nutritional factors. Extrinsic risk factors include mechanical factors such as surface, footwear and external loading as well as physical training parameters. Psychological traits may also play a role in increasing stress fracture risk. Equally important to these types of analyses of individual risk factors is the integration of information to produce a composite picture of risk. The purpose of this paper is to critically appraise the existing literature by evaluating study design and quality, in order to provide a current synopsis of the known scientific information related to stress fracture risk factors. The literature is not fully complete with well conducted studies on this topic, but a great deal of information has accumulated over the past 20 years. Although stress fractures result from repeated loading, the exact contribution of training factors (volume, intensity, surface) has not been clearly established. From what we do know, menstrual disturbances, caloric restriction, lower bone density, muscle weakness and leg length differences are risk factors for stress fracture. Other time-honoured risk factors such as lower extremity alignment have not been shown to be causative even though anecdotal evidence indicates they are likely to play an important role in stress fracture pathogenesis.
A history of anterior cruciate ligament injury was the only statistically significant risk factor for a recurrent hamstring strain in our study. Of the imaging parameters, the MR length of a strain had the strongest correlation association with a repeat hamstring strain and therefore may assist in identifying which athletes are more likely to suffer further reinjury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.