In recent years, we have witnessed the continual growth in the use of ontologies in order to provide a mechanism to enable machine reasoning. This paper describes an automatic classifier, which focuses on the use of ontologies for classifying Web pages with respect to the Dewey Decimal Classification (DDC) and Library of Congress Classification (LCC) schemes. Firstly, we explain how these ontologies can be built in a modular fashion, and mapped into DDC and LCC. Secondly, we propose the formal definition of a DDC-LCC and an ontology-classification-scheme mapping. Thirdly, we explain the way the classifier uses these ontologies to assist classification. Finally, an experiment in which the accuracy of the classifier was evaluated is presented. The experiment shows that our approach results an improved classification in terms of accuracy. This improvement, however, comes at a cost in a low overage ratio due to the incompleteness of the ontologies used. c
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.