With presently known input physics and computer simulations in 1D, a self-consistent treatment of core collapse supernovae does not yet lead to successful explosions, while 2D models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multi-D convection treatment for unstable layers (possibly with the aid of rotation, magnetic fields and/or still existent uncertainties in neutrino opacities). On the other hand there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e. most strongly the yields of Fe-group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino scattering cross sections in order to mimic in 1D the possible increase of neutrino luminosities caused by uncertainties in proto-neutron star convection. Alternatively, parameterized variations are applied to the neutrino absorption cross sections on nucleons in the "gain region" to mimic the increase in neutrino energy deposition enabled by convective turnover. We find that both measures lead to similar results, causing explosions and a Y e > 0.5 in the innermost ejected layers, due to the combined effect of a short weak interaction time scale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. We include all weak interactions (electron and positron capture, beta-decay, neutrino and antineutrino capture on nuclei, and neutrino and antineutrino capture on nucleons) and present first nucleosynthesis results for these innermost ejected layers to discuss how they improve predictions for Fe-group nuclei. The proton-rich environment results in enhanced abundances of 45 Sc, 49 Ti, and 64 Zn as requested by chemical evolution studies and observations of low metallicity stars as well as appreciable production of nuclei in the mass range up to A = 80.
Sensitive detection in microfluidic analytical devices is a challenge because of the extremely small detection volumes available. Considerable efforts have been made lately to further address this aspect and to investigate techniques other than fluorescence. Among the newly introduced techniques are the optical methods of chemiluminescence, refraction and thermooptics, as well as the electrochemical methods of amperometry, conductimetry and potentiometry. Developments are also in progress to create miniaturized plasma-emission spectrometers and sensitive detectors for gas-chromatographic separations.
Contactless conductivity detection was carried out on a planar electrophoresis device by capacitive coupling using an ac excitation voltage of 500 V(p-p) and a frequency of 100 kHz. It was possible to carry out detection in this way through a cover plate of 1 mm thickness. Better sensitivity is obtained, however, by placing the electrodes into troughs that allow tighter coupling to the separation channel. The 3 x S/N detection limits are 0.49, 0.41, and 0.35 microM for the small inorganic ions K+, Na+, and Mg2+. The detection of heavy metals is demonstrated with the example of Mn2+, Zn2+, and Cr3+ with detection limits of 2.1, 2.8, and 6.8 microM, respectively. The universal nature of the method is further illustrated by the detection of citric and lactic acids, which are of interest in food and beverage analysis, and detection of three antiinflammatory nonsteroid drugs, 4-acetamidophenol, ibuprofen, and salicylic acid, as examples of species of pharmaceutical interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.