Wnts are secreted signaling proteins that regulate developmental processes. Here we show that Wnt signaling, likely mediated by Wnt-10b, is a molecular switch that governs adipogenesis. Wnt signaling maintains preadipocytes in an undifferentiated state through inhibition of the adipogenic transcription factors CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator- activated receptor gamma (PPARgamma). When Wnt signaling in preadipocytes is prevented by overexpression of Axin or dominant-negative TCF4, these cells differentiate into adipocytes. Disruption of Wnt signaling also causes transdifferentiation of myoblasts into adipocytes in vitro, highlighting the importance of this pathway not only in adipocyte differentiation but also in mesodermal cell fate determination.
Nod1 and Nod2 are intracellular proteins that are involved in host recognition of specific bacterial molecules and are genetically associated with several inflammatory diseases. Nod1 and Nod2 stimulation activates NF-jB through RICK, a caspase-recruitment domain-containing kinase. However, the mechanism by which RICK activates NF-jB in response to Nod1 and Nod2 stimulation is unknown. Here we show that RICK is conjugated with lysine-63-linked polyubiquitin chains at lysine 209 (K209) located in its kinase domain upon Nod1 or Nod2 stimulation and by induced oligomerization of RICK. Polyubiquitination of RICK at K209 was essential for RICK-mediated IKK activation and cytokine/chemokine secretion. However, RICK polyubiquitination did not require the kinase activity of RICK or alter the interaction of RICK with NEMO, a regulatory subunit of IjB kinase (IKK). Instead, polyubiquitination of RICK was found to mediate the recruitment of TAK1, a kinase that was found to be essential for Nod1-induced signaling. Thus, RICK polyubiquitination links TAK1 to IKK complexes, a critical step in Nod1/Nod2-mediated NF-jB activation.
At least two distinct recurrent chromosomal translocations have been implicated in the pathogenesis of MALT lymphoma. The first, t(1;14), results in the transfer of the entire Bcl10 gene to chromosome 14 wherein Bcl10 expression is inappropriately stimulated by the neighboring Ig enhancer. The second, t(11;18), results in the synthesis of a novel fusion protein, API2-MALT1. Until now, no common mechanism of action has been proposed to explain how the products of these seemingly unrelated translocations may contribute to the same malignant process. We show here that Bcl10 and MALT1 form a strong and specific complex within the cell, and that these proteins synergize in the activation of NF-B. The data support a mechanism of action whereby Bcl10 mediates the oligomerization and activation of the MALT1 caspase-like domain. This subsequently activates the IKK complex through an unknown mechanism, setting in motion a cascade of events leading to NF-B induction. Furthermore, the API2-MALT1 fusion protein also strongly activates NF-B and shows dependence upon the same downstream signaling factors. We propose a model whereby both the Bcl10⅐MALT1 complex and the API2-MALT1 fusion protein activate a common downstream signaling pathway that originates with the oligomerization-dependent activation of the MALT1 caspase-like domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.