OBJECTIVETo evaluate feasibility, safety, and efficacy of overnight closed-loop insulin delivery in free-living youth with type 1 diabetes.RESEARCH DESIGN AND METHODSOvernight closed loop was evaluated at home by 16 pump-treated adolescents with type 1 diabetes aged 12–18 years. Over a 3-week period, overnight insulin delivery was directed by a closed-loop system, and on another 3-week period sensor-augmented therapy was applied. The order of interventions was random. The primary end point was time when adjusted sensor glucose was between 3.9 and 8.0 mmol/L from 2300 to 0700 h.RESULTSClosed loop was constantly applied over at least 4 h on 269 nights (80%); sensor data were collected over at least 4 h on 282 control nights (84%). Closed loop increased time spent with glucose in target by a median 15% (interquartile range −9 to 43; P < 0.001). Mean overnight glucose was reduced by a mean 14 (SD 58) mg/dL (P < 0.001). Time when glucose was <70 mg/dL was low in both groups, but nights with glucose <63 mg/dL for at least 20 min were less frequent during closed loop (10 vs. 17%; P = 0.01). Despite lower total daily insulin doses by a median 2.3 (interquartile range −4.7 to 9.3) units (P = 0.009), overall 24-h glucose was reduced by a mean 9 (SD 41) mg/dL (P = 0.006) during closed loop.CONCLUSIONSUnsupervised home use of overnight closed loop in adolescents with type 1 diabetes is safe and feasible. Glucose control was improved during the day and night with fewer episodes of nocturnal hypoglycemia.
OBJECTIVEOvernight hypoglycemia occurs frequently in individuals with type 1 diabetes and can result in loss of consciousness, seizure, or even death. We conducted an in-home randomized trial to determine whether nocturnal hypoglycemia could be safely reduced by temporarily suspending pump insulin delivery when hypoglycemia was predicted by an algorithm based on continuous glucose monitoring (CGM) glucose levels.RESEARCH DESIGN AND METHODSFollowing an initial run-in phase, a 42-night trial was conducted in 45 individuals aged 15–45 years with type 1 diabetes in which each night was assigned randomly to either having the predictive low-glucose suspend system active (intervention night) or inactive (control night). The primary outcome was the proportion of nights in which ≥1 CGM glucose values ≤60 mg/dL occurred.RESULTSOvernight hypoglycemia with at least one CGM value ≤60 mg/dL occurred on 196 of 942 (21%) intervention nights versus 322 of 970 (33%) control nights (odds ratio 0.52 [95% CI 0.43–0.64]; P < 0.001). Median hypoglycemia area under the curve was reduced by 81%, and hypoglycemia lasting >2 h was reduced by 74%. Overnight sensor glucose was >180 mg/dL during 57% of control nights and 59% of intervention nights (P = 0.17), while morning blood glucose was >180 mg/dL following 21% and 27% of nights, respectively (P < 0.001), and >250 mg/dL following 6% and 6%, respectively. Morning ketosis was present <1% of the time in each arm.CONCLUSIONSUse of a nocturnal low-glucose suspend system can substantially reduce overnight hypoglycemia without an increase in morning ketosis.
Objective: To evaluate the safety and effectiveness of the Loop Do-It-Yourself automated insulin delivery system. Research Design and Methods: A prospective real-world observational study was conducted, which included 558 adults and children (age range 1–71 years, mean HbA1c 6.8% ± 1.0%) who initiated Loop either on their own or with community-developed resources and provided data for 6 months. Results: Mean time-in-range 70–180 mg/dL (TIR) increased from 67% ± 16% at baseline (before starting Loop) to 73% ± 13% during the 6 months (mean change from baseline 6.6%, 95% confidence interval [CI] 5.9%–7.4%; P < 0.001). TIR increased in both adults and children, across the full range of baseline HbA1c, and in participants with both high- and moderate-income levels. Median time <54 mg/dL was 0.40% at baseline and changed by −0.05% (95% CI −0.09% to −0.03%, P < 0.001). Mean HbA1c was 6.8% ± 1.0% at baseline and decreased to 6.5% ± 0.8% after 6 months (mean difference = −0.33%, 95% CI −0.40% to −0.26%, P < 0.001). The incidence rate of reported severe hypoglycemia events was 18.7 per 100 person-years, a reduction from the incidence rate of 181 per 100 person-years during the 3 months before the study. Among the 481 users providing Loop data at 6 months, median continuous glucose monitoring use was 96% (interquartile range [IQR] 91%–98%) and median time Loop modulating basal insulin was at least 83% (IQR 73%–88%). Conclusions: The Loop open source system can be initiated with community-developed resources and used safely and effectively by adults and children with type 1 diabetes.
Objective: Nocturnal hypoglycemia is a common problem with type 1 diabetes. In the home setting, we conducted a pilot study to evaluate the safety of a system consisting of an insulin pump and continuous glucose monitor communicating wirelessly with a bedside computer running an algorithm that temporarily suspends insulin delivery when hypoglycemia is predicted. Research Design and Methods: After the run-in phase, a 21-night randomized trial was conducted in which each night was randomly assigned 2:1 to have either the predictive low-glucose suspend (PLGS) system active (intervention night) or inactive (control night). Three predictive algorithm versions were studied sequentially during the study for a total of 252 intervention and 123 control nights. The trial included 19 participants 18-56 years old with type 1 diabetes (hemoglobin A1c level of 6.0-7.7%) who were current users of the MiniMed Paradigm Ò REAL-Time RevelÔ System and Sof-sensor Ò glucose sensor (Medtronic Diabetes, Northridge, CA). Results: With the final algorithm, pump suspension occurred on 53% of 77 intervention nights. Mean morning glucose level was 144 -48 mg/dL on the 77 intervention nights versus 133 -57 mg/dL on the 37 control nights, with morning blood ketones >0.6 mmol/L following one intervention night. Overnight hypoglycemia was lower on intervention than control nights, with at least one value £70 mg/dL occurring on 16% versus 30% of nights, respectively, with the final algorithm. Conclusions: This study demonstrated that the PLGS system in the home setting is safe and feasible. The preliminary efficacy data appear promising with the final algorithm reducing nocturnal hypoglycemia by almost 50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.