Aquaculture Full-length research article Modeling the weight gain of freshwater-reared rainbow trout (Oncorhynchus mykiss) during the grow-out phase ABSTRACT-We used five nonlinear models to calculate the weight gain of rainbow trout (122.11±15.6 g) during the final grow-out phase of 98 days under three different feed types (two commercials diets, A and B, and one experimental diet, C) in triplicate groups. We fitted the von Bertalanffy growth function with allometric and isometric scaling coefficient, Gompertz, Logistic, and Brody functions to weight (g) at age data of 900 fish, distributed in nine tanks. The equations were fitted to the data based on the least squares method using the Marquardt iterative algorithm. The accuracy of the fitted models was evaluated using a model performance metrics, combining mean squared residuals (MSR), mean absolute error (MAE), and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. The evaluation criteria for the Logistic model indicated the best overall fit (0.704) under all different feed types, followed by the Gompertz model (0.148), and the von Bertalanffy-I and von Bertalanffy-A with 0.074 each. The obtained asymptotic values are in agreement with the biological attributes of the species, except for the Brody model, whose values were massively exceeding the biologic traits of rainbow trout in 0.556 of tested cases. Additionally, ∆AICc results identify the Brody model as the only model not substantially supported by the data in any case. All other models are capable of reflecting the effects of various feed types; these results are directly applicable in farm management decisions.
Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout (Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.