We study the fine-grained complexity of Leader Contributor Reachability ($${\textsf {LCR}} $$ LCR ) and Bounded-Stage Reachability ($${\textsf {BSR}} $$ BSR ), two variants of the safety verification problem for shared memory concurrent programs. For both problems, the memory is a single variable over a finite data domain. Our contributions are new verification algorithms and lower bounds. The latter are based on the Exponential Time Hypothesis ($${\textsf {ETH}} $$ ETH ), the problem $${\textsf {Set~Cover}} $$ Set Cover , and cross-compositions. $${\textsf {LCR}} $$ LCR is the question whether a designated leader thread can reach an unsafe state when interacting with a certain number of equal contributor threads. We suggest two parameterizations: (1) By the size of the data domain $${\texttt {D}}$$ D and the size of the leader $${\texttt {L}}$$ L , and (2) by the size of the contributors $${\texttt {C}}$$ C . We present algorithms for both cases. The key techniques are compact witnesses and dynamic programming. The algorithms run in $${\mathcal {O}}^*(({\texttt {L}}\cdot ({\texttt {D}}+1))^{{\texttt {L}}\cdot {\texttt {D}}} \cdot {\texttt {D}}^{{\texttt {D}}})$$ O ∗ ( ( L · ( D + 1 ) ) L · D · D D ) and $${\mathcal {O}}^*(2^{{\texttt {C}}})$$ O ∗ ( 2 C ) time, showing that both parameterizations are fixed-parameter tractable. We complement the upper bounds by (matching) lower bounds based on $${\textsf {ETH}} $$ ETH and $${\textsf {Set~Cover}} $$ Set Cover . Moreover, we prove the absence of polynomial kernels. For $${\textsf {BSR}} $$ BSR , we consider programs involving $${\texttt {t}}$$ t different threads. We restrict the analysis to computations where the write permission changes $${\texttt {s}}$$ s times between the threads. $${\textsf {BSR}} $$ BSR asks whether a given configuration is reachable via such an $${\texttt {s}}$$ s -stage computation. When parameterized by $${\texttt {P}}$$ P , the maximum size of a thread, and $${\texttt {t}}$$ t , the interesting observation is that the problem has a large number of difficult instances. Formally, we show that there is no polynomial kernel, no compression algorithm that reduces the size of the data domain $${\texttt {D}}$$ D or the number of stages $${\texttt {s}}$$ s to a polynomial dependence on $${\texttt {P}}$$ P and $${\texttt {t}}$$ t . This indicates that symbolic methods may be harder to find for this problem.
We study two liveness verification problems for broadcast networks, a system model of identical clients communicating via message passing. The first problem is liveness verification. It asks whether there is a computation such that one of the clients visits a final state infinitely often. The complexity of the problem has been open since 2010 when it was shown to be P-hard and solvable in EXPSPACE. We close the gap by a polynomial-time algorithm. The algorithm relies on a characterization of live computations in terms of paths in a suitable graph, combined with a fixed-point iteration to efficiently check the existence of such paths. The second problem is fair liveness verification. It asks for a computation where all participating clients visit a final state infinitely often. We adjust the algorithm to also solve fair liveness in polynomial time.Related Work We already discussed the related work on safety and liveness verification of broadcast networks. Broadcast networks [12,36,20] were introduced to verify ad hoc networks [28,35]. Ad hoc networks are reconfigurable in that the number of clients as well as their communication topology may change during the computation. If the transition relation is compatible with the topology, safety verification has been shown to be decidable [27]. Related studies do not assume compatibility but restrict the topology [26]. If the dependencies among clients are bounded [30], safety verification is decidable independent of the transition relation [38,39]. Verification tools turn these decision procedures into practice [31,15]. D'Osualdo and Ong suggested a typing discipline for the communication topology [16]. In [4], decidability and undecidability results for
Abstract. We study the fine-grained complexity of Leader Contributor Reachability (LCR) and Bounded-Stage Reachability (BSR), two variants of the safety verification problem for shared-memory concurrent programs. For both problems, the memory is a single variable over a finite data domain. We contribute new verification algorithms and lower bounds based on the Exponential Time Hypothesis (ETH) and kernels.LCR is the question whether a designated leader thread can reach an unsafe state when interacting with a certain number of equal contributor threads. We suggest two parameterizations: (1) By the size of the data domain D and the size of the leader L, and (2) by the size of the contributors C. We present two algorithms,showing that both parameterizations are fixed-parameter tractable. Further, we suggest a modification of the first algorithm suitable for practical instances. The upper bounds are complemented by (matching) lower bounds based on ETH and kernels.For BSR, we consider programs involving t different threads. We restrict the analysis to computations where the write permission changes s times between the threads. BSR asks whether a given configuration is reachable via such an s-stage computation. When parameterized by P, the maximum size of a thread, and t, the interesting observation is that the problem has a large number of difficult instances. Formally, we show that there is no polynomial kernel, no compression algorithm that reduces D or s to a polynomial dependence on P and t. This indicates that symbolic methods may be harder to find for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.