Oxoiron(IV) species have been found to act as the oxidants in the catalytic cycles of several mononuclear nonheme iron enzymes that activate dioxygen. To gain insight into the factors that govern the oxidative reactivity of such complexes, a series of five synthetic S = 1 [FeIV(O)(LN5)]2+ complexes has been characterized with respect to their spectroscopic and electrochemical properties as well as their relative abilities to carry out oxo transfer and hydrogen atom abstraction. The Fe=O units in these five complexes are supported by neutral pentadentate ligands having a combination of pyridine and tertiary amine donors but with different ligand frameworks. Characterization of the five complexes by X-ray absorption spectroscopy reveals Fe=O bonds of ca. 1.65 Å in length that give rise to the intense 1s→3d pre-edge features indicative of iron centers with substantial deviation from centrosymmetry. Resonance Raman studies show that the five complexes exhibit ν(Fe=O) modes at 825–841 cm−1. Spectropotentiometric experiments in acetonitrile with 0.1 M water reveal that the supporting pentadentate ligands modulate the E1/2(IV/III) redox potentials with values ranging from 0.83 to 1.23 V vs. Fc, providing the first electrochemical determination of the E1/2(IV/III) redox potentials for a series of oxoiron(IV) complexes. The 0.4-V difference in potential may arise from differences in the relative number of pyridine and tertiary amine donors on the LN5 ligand and in the orientations of the pyridine donors relative to the Fe=O bond that are enforced by the ligand architecture. The rates of oxo-atom transfer (OAT) to thioanisole correlate linearly with the increase in the redox potentials, reflecting the relative electrophilicities of the oxoiron(IV) units. However this linear relationship does not extend to the rates of hydrogen-atom transfer (HAT) from 1,3-cyclohexadiene (CHD), 9,10-dihydroanthracene (DHA), and benzyl alcohol, suggesting that the HAT reactions are not governed by thermodynamics alone. This study represents the first investigation to compare the electrochemical and oxidative properties of a series of S = 1 FeIV=O complexes with different ligand frameworks and sheds some light on the complexities of the reactivity of the oxoiron(IV) unit.
Methane in the environment is produced by both biotic and abiotic processes. Biomethanation involves the formation of methane by microbes that live in oxygen-free environments. Abiotic methane formation proceeds under conditions at elevated temperature and/or pressure. Here we present a chemical reaction that readily forms methane from organosulphur compounds under highly oxidative conditions at ambient atmospheric pressure and temperature. When using iron(II/III), hydrogen peroxide and ascorbic acid as reagents, S-methyl groups of organosulphur compounds are efficiently converted into methane. In a first step, methyl sulphides are oxidized to the corresponding sulphoxides. In the next step, demethylation of the sulphoxide via homolytic bond cleavage leads to methyl radical formation and finally to methane in high yields. Because sulphoxidation of methyl sulphides is ubiquitous in the environment, this novel chemical route might mimic methane formation in living aerobic organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.