Marathon runners demonstrate a higher prevalence of morphological alterations compared to non-runners. Marathon running caused a significant change in Achilles tendon stiffness and Doppler signals. Pre-existing soft Achilles tendon properties on sonoelastography may be a predisposing risk for development of symptoms post-running.
Muscle injuries of the lower leg are a common cause for time off from sports, and may also be a cause of disability in nonathletes who have a running or "pushing off" injury as part of their activities of daily living. Most injuries can be managed without imaging, but in selected cases advanced imaging techniques can demonstrate the exact site and extent of the injury and potentially modify rehabilitation and return to sports. In experienced hands ultrasonography can identify the location of muscle injuries as well as aid in hematoma aspiration. It is useful for excluding differential diagnoses such as deep vein thrombosis or Baker's cyst and may be superior for investigating certain conditions such as muscle hernia. Magnetic resonance imaging is more sensitive for injury to deeper muscles and dual injuries and is generally the modality of choice in elite athletes.
Background Before the role of shear wave elastography (SWE) and B mode ultrasound (US) in the diagnosis of different forms of idiopathic inflammatory myopathies (IIM) can be investigated, normative data is required. This study aimed to describe and then compare normative SWE and B mode ultrasound metrics of muscles in healthy controls and patients with IIM. Methods Twenty nine healthy adult controls and 10 IIM patients (5 with inclusion body myositis and 5 with necrotising autoimmune myopathy) underwent a full clinical examination, laboratory investigations, SWE and US measurements of selected proximal and distal limb muscles. Shear wave speed (SWS) and multiple US domains [echogenicity, fascial thickness, muscle bulk and power Doppler (PD)] were measured in both groups. Results In healthy controls (n = 29; mean age 46.60 ± 16.10; 44.8 % female), age was inversely correlated with SWS at the deltoid (stretch) (Rs. -0.40, p = 0.030) and PD score at the deltoid (rest) (Rs. -0.40, P = 0.032). Those ≥ 50 years old had a lower SWS at the deltoid (stretch) compared to the < 50 year group (2.92 m/s vs. 2.40 m/s, P = 0.032). Age correlated with increased echogenicity in the flexor digitorum profundus (Rs. 0.38, P = 0.045). Females had a smaller muscle bulk in the deltoid (P = 0.022). Body mass index (BMI) was inversely associated with SWS in the deltoid (stretch) (Rs – 0.45, P = 0.026), and positively correlated with echogenicity in the deltoid (Rs. 0.69, P = 0.026). In patients ≥50 years of age, patients with IIM (mean age 61.00 ± 8.18; females 20.0 %) had a higher proportion of abnormal echogenicity scores at the flexor digitorum profundus (FDP) (40.00 % vs. 14.30 %, P = 0.022) and tibialis anterior (TA) (80.00 % vs. 28.60 %, P = 0.004). Fascial thickness was lower in the FDP (0.63mm vs. 0.50mm, p = 0.012) and TA (0.58mm vs. 0.45mm, P = 0.001). Conclusions Our findings suggest there is scope for US techniques to be useful for diagnostic screening of affected muscles in patients with IIM, especially in those with suspected inclusion body myositis or necrotising autoimmune myopathy. We provide normative data for future studies into SWE and US techniques in skeletal muscle. The differences between IIM patients and controls warrant further study in a broader IIM patient cohort.
Context:Articular cartilage possesses poor natural healing mechanisms, and a variety of non-cell-based and cell-based treatments aim to promote regeneration of hyaline cartilage.Data Sources:A review of the literature to December 2013 using PubMed with search criteria including the keywords stem cell, cell therapy, cell transplantation, cartilage, chondral, and chondrogenic.Study Selection:Forty-five articles were identified that employed local mesenchymal stem cell (MSC) therapy for joint disorders in humans. Nine comparative studies were identified, consisting of 3 randomized trials, 5 cohort studies, and 1 case-control study.Study Type:Clinical review.Level of Evidence:Level 4.Data Extraction:Studies were assessed for stem cell source, method of implantation, comparison groups, and concurrent surgical techniques.Results:Two studies comparing MSC treatment to autologous chondrocyte implantation found similar efficacy. Three studies reported clinical benefits with intra-articular MSC injection over non-MSC controls for cases undergoing debridement with or without marrow stimulation, although a randomized study found no significant clinical difference at 2-year follow-up but reported better 18-month magnetic resonance imaging and histologic scores in the MSC group. No human studies have compared intra-articular MSC therapy to non-MSC techniques for osteoarthritis in the absence of surgery.Conclusion:Mesenchymal stem cell–based therapies appear safe and effective for joint disorders in large animal preclinical models. Evidence for use in humans, particularly, comparison with more established treatments such as autologous chondrocyte implantation and microfracture, is limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.