Since their introduction around a decade ago, embolic drug-eluting beads (DEBs) have become a well-established treatment option for the locoregional transarterial treatment of hepatic malignancies. Despite this success, the therapy is seen to be limited by the choice of drug and more effective options are therefore being sought. These include the small molecule multi-tyrosine kinase inhibitors (MTKi), which exert an anti-angiogenic and anti-proliferative effect that could be highly beneficial in combating some of the unwanted downstream consequences of embolization. Vandetanib is an MTKi which acts against such targets as vascular endothelial growth factor receptor (VEGFR) and epithelial growth factor receptor (EGFR) and has demonstrated modest activity against hepatocellular carcinoma (HCC), albeit with some dose-limiting cardiac toxicity. This makes this compound an interesting candidate for DEB-based locoregional delivery. In this study we describe the preparation and characterisation of vandetanib DEBs made from DC Bead™ and its radiopaque counterpart, DC Bead LUMI™. Drug loading was shown to be dependent upon the pH of the drug loading solution, as vandetanib has multiple sites for protonation, with the bead platform also having a fundamental influence due to differences in binding capacities and bead shrinkage effects. Fourier transform infrared (FTIR) spectroscopy and energy dispersive X-ray (EDX) Spectroscopy confirmed drug interaction is by ionic interaction, and in the case of the radiopaque DEB, the drug is distributed uniformly inside the bead and contributes slightly to the overall radiopacity by virtue of a bromine atom on the vandetanib structure. Drug release from both bead platforms is controlled and sustained, with a slightly slower rate of release from the radiopaque bead due to its more hydrophobic nature. Vandetanib DEBs therefore have suitable characteristics for intra-arterial delivery and site-specific sustained release of drug into liver tumours.
PURPOSE: To evaluate the plasma and tissue pharmacokinetics, safety and toxicity following intra-arterial hepatic artery administration of Vandetanib (VTB)-eluting Radiopaque Beads (VERB) in healthy swine.MATERIALS AND METHODS: In a first phase, healthy swine were treated with hepatic intra-arterial administration of VERB at target dose loading strengths of 36 mg/mL (VERB36), 72 mg/mL (VERB72) and 120 mg/mL (VERB120). Blood and tissue samples were taken and analysed for VTB and metabolites to determine pharmacokinetic parameters for the different dose forms over 30 days. In a second phase, animals were treated with unloaded radiopaque beads or high dose VTB loaded beads (VERB100, 100 mg/mL). Tissue samples from embolized and non-embolized areas of the liver were evaluated at necropsy (30 and 90 days) for determination of VTB and metabolite levels and tissue pathology. Imaging was performed prior to sacrifice using multi-detector computed tomography (MDCT) and imaging findings correlated with pathological changes in the tissue and location of the radiopaque beads.RESULTS: The peak plasma levels of VTB (Cmax) released from the various doses of VERB ranged between 6.19-17.3 ng/mL indicating a low systemic burst release. The plasma profile of VTB was consistent with a distribution phase up to 6 h after administration followed by elimination with a half-life of 20-23 h. The AUC of VTB and its major metabolite N-desmethyl vandetanib (NDM VTB) was approximately linear with the dose strength of VERB. VTB plasma levels were at or below limits of detection two weeks after administration. In liver samples, VTB and NDM VTB were present in treated sections at 30 days after administration at levels above the in vitro IC50 for biological effectiveness. At 90 days both analytes were still present in treated liver but were near or below the limit of quantification in untreated liver sections, demonstrating sustained release from the VERB. Comparison of the reduction of the liver lobe size and associated tissue changes suggested a more effective embolization with VERB compared to the beads without drug.CONCLUSIONS: Hepatic intra-arterial administration of VERB results in a low systemic exposure and enables sustained delivery of VTB to target tissues following embolization. Changes in the liver tissue are consistent with an effective embolization and this study has demonstrated that VERB100 is well tolerated with no obvious systemic toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.