The solgel process is a solution synthesis technique which provides a low temperature chemical route for the preparation of rigid transparent matrix materials. Luminescent organic dye molecules have been incorporated via the solgel method into organically modified silicate (ORMOSIL) polymer host matrices. Optical gain, laser oscillation, and photostability of rhodamine and coumarin dyes doped into ORMOSIL gels are reported. The gel laser materials exhibit peak gain values of 40 cm(-1) and show improved photostability with respect to comparable polymeric host materials.
Photostructurable glass-ceramics are a promising class of materials for MEMS devices. Previous work micromachining these materials used conventional photolithography equipment and masking techniques; however, we use direct-write CAM tools and a pulsed UV laser micromachining station for rapid prototyping and enhanced depth control. We have already used this class of materials to build components for MEMS thrusters, including fuel tanks and nozzles: structures that would prove difficult to build by standard microfabrication techniques.A series of experiments was performed to characterize process parameters and establish the processing trade-offs in the laser exposure step. The hypothesis that there exists a critical dose of UV light for the growth of an etchable crystalline phase was tested by exposing the material to a fluence gradient for a variety of pulse train lengths, and then processing as usual. By measuring the dimensions of the etched region, we were able to determine the dose. We found that the dose is proportional to the square of the per-pulse fluence. This has allowed us to create not only embedded structures, but also stacked embedded structures. This also implies that we can embed tubes and tunnels with a single exposure inside a monolithic glass sample. We feel that this technique has promise for a number of applications, including microfluidics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.