Summary
Tapeworms cause debilitating neglected diseases that can be deadly and often require surgery due to ineffective drugs. Here we present the first analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115-141 megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have species-specific expansions of non-canonical heat shock proteins and families of known antigens; specialised detoxification pathways, and metabolism finely tuned to rely on nutrients scavenged from their hosts. We identify new potential drug targets, including those on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.
Phylogenetic interrelationships of 32 species belonging to 18 genera and four families of the superfamily Microphalloidea were studied using partial sequences of nuclear lsrDNA analysed by Bayesian inference and maximum parsimony. The resulting trees were well resolved at most nodes and demonstrated that the Microphalloidea, as represented by the present data-set, consists of three main clades corresponding to the families Lecithodendriidae, Microphallidae and Pleurogenidae + Prosthogonimidae. Interrelationships of taxa within each clade are considered; as a result of analysis of molecular and morphological data, Floridatrema Kinsella & Deblock, 1994 is synonymised with Maritrema Nicoll, 1907, Candidotrema Dollfus, 1951 with Pleurogenes Looss, 1896, and Schistogonimus Lühe, 1909 with Prosthogonimus Lühe, 1899. The taxonomic value of some morphological features, used traditionally for the differentiation of genera within the Lecithodendriidae and Prosthogonimidae, is reconsidered. Previous systematic schemes are discussed from the viewpoint of present results, and perspectives of future studies are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.