1. The species composition and spatial distribution of small insects (Hemiptera, Coleoptera, Lepidoptera) and arachnids (Araneae, Opiliones, and Pseudoscorpiones) were investigated in three indigenous, upland grasslands identified as the National Vegetation Classification Festuca-Agrostis-Galium typical subcommunity (code U4a), Festuca-Agrostis-Galium, Vaccinium-Deschampsia subcommunity (code U4e), and Nardus stricta species-poor sub-community (code U5a), on which grazing management was manipulated experimentally.2. Two hypotheses were tested that predicted arthropod diversity in upland grasslands. The habitat heterogeneity hypothesis predicts that the species number and abundance of arthropods will have an asymptotic relationship with increasing numbers of plant species and greater structural heterogeneity in the vegetation. The symbiosis between patches hypothesis states that the species number and abundance of arthropods will express a unimodal relationship with the grain size of sward patches created by grazing. The sward patches must be large enough to be apparent to, and support populations of, arthropods, but small enough that interspersed tussocks provide shelter from weather and a deterrent to disturbance by grazers.3. The hypotheses were tested by sampling arthropods from the geometrical patterns represented by the individual tussocks and intermediate sward components of three indigenous grasslands produced by different grazing treatments. Paired samples of arthropods were taken by motorized suction sampler, the first of the pair from the grazed sward and the second, the accumulated samples from the surrounding triad of tussocks (U4a and U5a grasslands) or hummocks (U4e grassland). The paired samples were taken from six randomly-selected locations across both replicates of each of the grazing treatments.4. Arthropod species composition and abundance were compared between the paired sward and tussock samples and in turn with measures of the vertical and horizontal components of vegetation structure, i.e. the variance in vegetation height per unit area and the area covered by tussock compared with sward.5. There were consistently more species and a greater abundance of arthropods associated with tussocks than with swards and the average species number and abundance for the combined pair of samples declined with increased grazing pressure. The relationship between vertical and horizontal components of vegetation structure and the species number and abundance of selected arthropods was asymptotic as opposed to unimodal, supporting the habitat heterogeneity hypothesis, rather than the symbiosis between patches hypothesis. 254 P. Dennis et al. 6. Small and relatively sedentary insects and arachnids are more sensitive to grazing intensity and species of grazer in these upland, indigenous grasslands than are larger Coleoptera and Araneae, which respond less directly to varied grazing management. The overall linear reduction of small herbivorous and predatory arthropods with increased grazing intensity was bu...
Pearce-Higgins, J. W., Dennis, P., Whittingham, M. J., Yalden, D. W. (2010). Impacts of climate on prey abundance account for fluctuations in a population of a northern wader at the southern edge of its range. ? Global Change Biology, 16 (1), 12-23. IMPF: 06.34Understanding the mechanisms by which climate change will affect animal populations is vital for adaptive management. Many studies have described changes in the timing of biological events, which can produce phenological mismatch. Direct effects on prey abundance might also be important, but have rarely been studied. We examine the likely importance of variation in prey abundance in driving the demographics of a European golden plover (Pluvialis apricaria) population at its southern range margin. Previous studies have correlated plover productivity with the abundance of their adult cranefly (Tipulidae) prey, and modelled the phenology of both plover breeding and cranefly emergence in relation to temperature. Our analyses demonstrate that abundance of adult craneflies is correlated with August temperature in the previous year. Correspondingly, changes in the golden plover population are negatively correlated with August temperature 2 years earlier. Predictions of annual productivity, based on temperature-mediated reductions in prey abundance, closely match observed trends. Modelled variation in annual productivity for a future scenario of increasing August temperatures predicts a significant risk of extinction of the golden plover population over the next 100 years, depending upon the magnitude of warming. Direct effects of climate warming upon cranefly populations may therefore cause northward range contractions of golden plovers, as predicted by climate envelope modelling. Craneflies are an important food source for many northern and upland birds, and our results are likely to have wide relevance to these other species. Research into the potential for habitat management to improve the resilience of cranefly populations to high temperature should be an urgent priority.Peer reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.