During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge", an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020". We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.
We present a novel method for identifying Skype clients and supernodes on a network using only flow data, based upon the detection of certain Skype control traffic. Flow-level identification allows long-term retrospective studies of Skype traffic as well as studies of Skype traffic on much larger scale networks than existing packet-based approaches. We use this method to identify Skype hosts and connection events to the network in a historical flow data set containing 182 full days of data over the six years from 2004 to 2009, in order to explore the evolution of the Skype network in general and a large observed portion thereof in particular. This represents, to the best of our knowledge, the first long-term retrospective analysis of the behavior of the Skype network based solely on flow data, and the first successful application of a Skype detection algorithm to flow data collected from a production network
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.