Sequelae of sepsis include anemia which presumably results from accelerated clearance of erythrocytes from circulating blood. The underlying mechanisms, however, remained hitherto elusive. Most recent studies disclosed that increased cytosolic Ca2+ activity and ceramide both trigger suicidal erythrocyte death (i.e., eryptosis), which is characterized by lipid scrambling of the cell membrane leading to phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing erythrocytes may adhere to vascular walls or may be engulfed by macrophages equipped with phosphatidylserine receptors. To explore whether sepsis leads to eryptosis, erythrocytes from healthy volunteers were exposed to plasma of patients suffering from sepsis, or to supernatants from sepsis producing pathogens. Then, phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca2+ activity (Fluo3 fluorescence), and ceramide formation (anti-ceramide antibody) were determined by flow cytometry. Challenge of erythrocytes with plasma from the patients but not with plasma from healthy individuals triggered annexin V binding. The effect of patient plasma on erythrocyte annexin V binding was paralleled by formation of ceramide and a significant increase of cytosolic Ca2+ activity. Exposure of erythrocytes to supernatant of pathogens similarly induced eryptosis, an effect correlating with sphingomyelinase activity. The present observations disclose a novel pathophysiological mechanism leading to anemia and derangement of microcirculation during sepsis. Exposure to plasma from septic patients triggers phosphatidylserine exposure leading to adherence to the vascular wall and clearance from circulating blood.
Summary Mature, circulating erythrocytes undergo senescence, which limits their life span to approximately 120 d. Upon injury, erythrocytes may undergo suicidal erythrocyte death or eryptosis, which may accelerate senescence and shorten their survival. Eryptosis is defined as cell shrinkage and exposure of phosphatidylserine at the cell surface. Triggers of eryptosis include oxidative stress. The present study addresses the impact of erythrocyte age on the relative susceptibility to eryptosis. Erythrocytes were separated into five fractions, based on age‐associated differences in density and volume. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, the cell volume from forward scatter, and the Ca2+ level from Fluo‐3‐dependent fluorescence. In addition, glutathione (GSH) concentrations were measured by an enzymatic/colourimetric method. After 48 h incubation in Ringer solution, Annexin V binding increased significantly with erythrocyte age. The differences were not accompanied by altered GSH concentrations, but were reversed by addition of the antioxidant N‐acetyl‐l‐cysteine in vitro. Also, N‐acetyl‐l‐cysteine significantly prolonged the half‐life of circulating mouse erythrocytes in vivo. Thus, the susceptibility to eryptosis increases with the age of the erythrocytes, and this effect is at least partially due to enhanced sensitivity to oxidative stress.
Side effects of cytostatic treatment include development of anemia resulting from either decreased generation or accelerated clearance of circulating erythrocytes. Recent experiments revealed a novel kind of stress-induced erythrocyte death, i.e. eryptosis, which is characterized by enhanced cytosolic Ca2+ levels, increased ceramide formation and exposure of phosphatidylserine at the cell surface. The present study explored whether cytostatic treatment with paclitaxel (Taxol®) triggers eryptosis. Blood was drawn from cancer patients before and after infusion of 175 mg/m2 Taxol®. The treatment significantly decreased the hematocrit and significantly increased the percentage of annexin-Vbinding erythrocytes in vivo (by 37%). In vitro incubation of human erythrocytes with 10 μM paclitaxel again significantly increased annexin-V-binding (by 129%) and augmented the increase of annexin-Vbinding following cellular stress. The enhanced phosphatidylserine exposure was not dependent on caspase-activity but paralleled by erythrocyte shrinkage, increase of cytosolic Ca2+ activity, ceramide formation and activation of calpain. Phosphatidylserine exposure was similarly induced by docetaxel but not by carboplatin or doxorubicin. Moreover, eryptosis was triggered by the Ca2+ ionophore ionomycin (10 μM). In mice, ionomycintreated eryptotic erythrocytes were rapidly cleared from circulating blood and sequestrated into the spleen. In conclusion, our data strongly suggest that paclitaxel-induced anemia is at least partially due to induction of eryptosis.
Background/Aims: Erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte outer membrane. Susceptibility to eryptosis is enhanced in aged erythrocytes and stimulated by NFκB-inhibitors Bay 11-7082 and parthenolide. Here we explored whether expression of NFκB and susceptibility to inhibitor-induced eryptosis is sensitive to erythrocyte age. Methods: Human erythrocytes were separated into five fractions, based on age-associated characteristics cell density and volume. NFκB compared to ß-actin protein abundance was estimated by Western blotting and cell volume from forward scatter. Phosphatidylserine exposure was identified using annexin-V binding. Results: NFκB was most abundant in young erythrocytes but virtually absent in aged erythrocytes. A 24h or 48h exposure to Ringer resulted in spontaneous decrease of forward scatter and increase of annexin V binding, effects more pronounced in aged than in young erythrocytes. Both, Bay 11-7082 (20 µM) and parthenolide (100 µM) triggered eryptosis, effects again most pronounced in aged erythrocytes. Conclusion: NFκB protein abundance is lowest and spontaneous eryptosis as well as susceptibility to Bay 11-7082 and parthenolide highest in aged erythrocytes. Thus, inhibition of NFκB signalling alone is not responsible for the stimulation of eryptosis by parthenolide or Bay 11-7082.
Cadmium ions are known to trigger apoptosis. Erythrocytes may similarly undergo suicidal death or eryptosis, which is characterized by exposure of phosphatidylserine at the erythrocyte surface. As macrophages are equipped with phosphatidylserine receptors, they bind, engulf and degrade phosphatidylserine exposing cells. Cellular mechanisms known to trigger cell membrane phospholipid scrambling include increased cytosolic Ca
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.