The current trend in infrastructural asset management is towards risk-based (a.k.a. reliability centered) maintenance, promising better performance at lower cost. By maintaining crucial components more intensively than less important ones, dependability increases while costs decrease. This requires good insight into the effect of maintenance on the dependability and associated costs. To gain these insights, we propose a novel framework that integrates fault tree analysis with maintenance. We support a wide range of maintenance procedures and dependability measures, including the system reliability, availability, mean time to failure, as well as the maintenance and failure costs over time, split into different cost components. Technically, our framework is realized via statistical model checking, a state-of-the-art tool for flexible modelling and simulation. Our compositional approach is flexible and extendible. We deploy our framework to two cases from industrial practice: insulated joints, and train compressors.
Maintenance is crucial to ensuring and improving system dependability: By performing timely inspections, repairs, and renewals the lifespan and reliability of systems can be significantly improved. Good maintenance planning, however, has to balance these improvements against the downsides of maintenance, such as costs and planned downtime. In this paper, we study the effect of different maintenance strategies on a pneumatic compressor used in trains. This compressor is critical to the operation of the train, and a failure can lead to a lengthy and expensive disruption. Within the rolling stock maintenance company NedTrain, we have modelled this compressor as a fault maintenance tree (FMT), i.e. a fault tree augmented with maintenance aspects. We show how this FMT naturally models complex maintenance plans including condition-based maintenance with regular inspections. The FMT is analysed using statistical model checking, which allows us to obtain several key performance indicators such as the system reliability, number of failures, and required unscheduled maintenance. Our analysis demonstrates that FMTs can be used to model the compressor, a practical system used in industry, including its maintenance policy. We validate this model against experiences in the field, compute the importance of performing minor services at a reasonable frequency, and find that the currently scheduled overhaul may not be cost-effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.