In this paper, the recent progress within biosensors for plant pathogen detection will be reviewed. Bio-recognition layers on sensors can be designed in various ways, however the most popular approach is to immobilise antibodies for specific capture of analytes. Focus will be put on antibody surface-immobilisation strategies as well as the use of antibodies in the widely used sensors, quartz crystal microbalance, surface plasmon resonance and cantilevers. We will describe the available data on antibody-based plant pathogen detection and furthermore use examples from detection of the pathogens Salmonella, Listeria monocytogenes, Streptococcus mutans, Bacillus cereus, Bacillus anthracis, Campylobacter and Escherichia coli. We will touch upon optimal assay design and further discuss the strengths and limitations of current sensor technologies for detection of viruses, bacteria and fungi.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosylation pattern of the sites at N209 and N265, while that at N329 is not utilised. The IC(50)-values for inactivation of PAI-1 by 4 monoclonal antibodies differed strongly between glycosylated PAI-1 and non-glycosylated PAI-1 expressed in E. coli. For 3 antibodies, an overlap of the epitopes with the glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended specifically on glycosylation of either one or the other of the utilised sites. The PAI-1-binding protein vitronectin reversed the changes associated with the lack of glycosylation at one of the sites. Our results stress the importance of the source of PAI-1 when studying the mechanisms of action of PAI-1-inactivating compounds of potential clinical importance.
Thrombin-activable fibrinolysis inhibitor (TAFI) is distinct from pancreatic procarboxypeptidase B in several ways. The enzymatic activity of TAFIa is unstable and decays with a half-life of a few minutes. During this study, we observed that (i) the isoelectric point (pI) of TAFI shifts dramatically from pH 5 toward pH 8 upon activation and (ii) TAFIa is significantly less soluble than TAFI. The structural bases for these observations were investigated by characterizing all post-translational modifications, including attached glycans and disulfide connectivity. The analyses revealed that all five potential N-glycosylation sites were utilized including Asn22, Asn51, Asn63, Asn86 (located in the activation peptide), and Asn219 (located in the catalytic domain). Asn219 was also found in an unglycosylated variant. Four of the glycans, Asn51, Asn63, Asn86, and Asn219 displayed microheterogeneity, while the glycan attached to Asn22 appeared to be homogeneous. In addition, bisecting GlcNAc attached to the trimannose core was detected, suggesting an origin other than the liver. Monosaccharide composition and LC-MS/MS analyses did not produce evidence for O glycosylation. TAFI contains eight cysteine residues, of which two, Cys69 and Cys383, are not involved in disulfides and contain free sulfhydryl groups. The remaining six cystines form disulfides, including Cys156-Cys169, Cys228-Cys252, and Cys243-Cys257. This pattern is homologous to pancreatic procarboxypeptidase B, and it is therefore unlikely that permutations in the cysteine connectivity are responsible for the enzymatic instability. LC-MS/MS analyses covering more than 90% of the TAFI amino acid sequence revealed no additional modifications. When these results are taken together, they suggest that the inherent instability of TAFIa is not caused by post-translational modifications. However, after activation, TAFIa loses 80% of the attached glycans, generating a large shift in pI and a propensity to precipitate. These changes are likely to significantly affect the properties of TAFIa as compared to TAFI.
Aim: This study aimed to investigate the association between salivary levels of myeloperoxidase (MPO), neutrophil elastase (NE), soluble urokinase-type plasminogen activator receptor (suPAR), matrix metalloproteinase (MMP)-8 and tissue inhibitor of matrix metalloproteinases (TIMP)-1 and gingival inflammation development during an experimental gingivitis study. Methods: A three-week experimental gingivitis study was conducted. Clinical recordings of dental plaque biofilm (Modified Quigley Hein Plaque Index, TQHPI) and gingival inflammation (Modified Gingival Index, MGI) were made at specific time points for each of the 42 participants. Salivary levels of MPO, NE, suPAR, MMP-8 and TIMP-1 at the same time points were measured using distinct immunoassays. For data analysis growth curve modelling was employed to account for the time-varying outcome (MGI score) and the time-varying covariates (salivary marker levels, and TQHPI score). Analyses were stratified according to the MGI-score trajectory groups previously identified as 'fast', respectively 'slow' responders. Results: Overall, higher MGI scores were statistically significantly positively associated with higher levels of MPO, MMP-8 and TIMP-1. Stratified analysis according to inflammation development trajectory group revealed higher levels of salivary MPO, MMP-8 and MMP-8/TIMP-1 ratio among the 'fast' responders than among 'slow' responders. None of the investigated salivary protein markers was associated with a 'slow' inflammation development response. Conclusions: Salivary levels of MPO, MMP-8 and TIMP-1 were associated with the extent and severity of gingival inflammation. While the 'fast' gingival inflammation response was associated with increased levels of MPO, MMP-8 and MMP-8/TIMP-1 ratio, the 'slow' response was not associated with any of the salivary protein markers investigated in this study. Neutrophil activity seems to orchestrate a 'fast' gingival inflammatory response among participants previously primed to gingival inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.