Recent satellite and hydrographic observations have shown that the rate of freshwater accumulation in the Beaufort Gyre of the Arctic Ocean has accelerated over the past decade. This acceleration has coincided with the dramatic decline observed in Arctic sea ice cover, which is expected to modify the efficiency of momentum transfer into the upper ocean. Here, a simple process model is used to investigate the dynamical response of the Beaufort Gyre to the changing efficiency of momentum transfer, and its link with the enhanced accumulation of freshwater. A linear relationship is found between the annual mean momentum flux and the amount of freshwater accumulated in the Beaufort Gyre. In the model, both the response time scale and the total quantity of freshwater accumulated are determined by a balance between Ekman pumping and an eddy-induced volume flux toward the boundary, highlighting the importance of eddies in the adjustment of the Arctic Ocean to a change in forcing. When the seasonal cycle in the efficiency of momentum transfer is modified (but the annual mean momentum flux is held constant), it has no effect on the accumulation of freshwater, although it does impact the timing and amplitude of the annual cycle in Beaufort Gyre freshwater content. This suggests that the decline in Arctic sea ice cover may have an impact on the magnitude and seasonality of the freshwater export into the North Atlantic.
Increased ocean‐driven basal melting beneath Antarctic ice shelves causes grounded ice to flow into the ocean at an accelerated rate, with consequences for global sea level. The turbulent transfer of heat through the ice shelf‐ocean boundary layer is critical in setting the basal melt rate, yet the processes controlling this transfer are poorly understood and inadequately represented in global climate models. This creates large uncertainties in predictions of future sea level rise. Using a hot‐water drilled access hole, two turbulence instrument clusters (TICs) were deployed 2.5 and 13.5 m beneath Larsen C ice shelf in December 2011. Both instruments returned a yearlong record of turbulent velocity fluctuations, providing a unique opportunity to explore the turbulent processes within the ice shelf‐ocean boundary layer. Although the scaling between the turbulent kinetic energy (TKE) dissipation rate and mean flow speed varies with distance from the ice shelf base, at both TICs the TKE dissipation rate is balanced entirely by the rate of shear production. The freshwater released by basal melting plays no role in the TKE balance. When the upper TIC is within the log‐layer, we derive an under‐ice drag coefficient of 0.0022 and a roughness length of 0.44 mm, indicating that the ice base is smooth. Finally, we demonstrate that although the canonical three‐equation melt rate parameterization can accurately predict the melt rate for this example of smooth ice underlain by a cold, tidally forced boundary layer, the law of the wall assumption employed by the parameterization does not hold at low flow speeds.
Ocean‐driven basal melting of Amundsen Sea ice shelves has triggered acceleration, thinning, and grounding line retreat on many West Antarctic outlet glaciers. Here we present the first year‐long (2014) record of basal melt rate at sub‐weekly resolution from a location on the outer Pine Island Ice Shelf. Adjustment of the upper thermocline to local wind forced variability in the vertical Ekman velocity is the dominant control on basal melting at weekly to monthly timescales. Atmosphere‐ice‐ocean surface heat fluxes or changes in advection of modified Circumpolar Deep Water play no discernible role at these timescales. We propose that during other years, a deepening of the thermocline in Pine Island Bay driven by longer timescale processes may have suppressed the impact of local wind forcing on high‐frequency upper thermocline height variability and basal melting. This highlights the complex interplay between the different processes and their timescales that set the basal melt rate beneath Pine Island Ice Shelf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.