A novel experimental approach to the investigation of surface adsorbate reaction dynamics is presented. The direct time-resolved monitoring of the surface reaction transition state and product formation dynamics were accomplished via pump-probe mass spectrometry. As an example, methyl iodide molecules adsorbed at submonolayer coverage on an ultrathin magnesia film on Mo(100) were photoexcited to the A-band by ultrafast laser pulse irradiation. Employing time-delayed multiphoton ionization the dynamics of the dissociative methyl iodide transition state and of the emerging methyl photoproduct could be detected with femtosecond resolution. The reaction times deduced from the temporal evolution of the methyl ion mass signal indicate a strong interaction of the methyl fragment with the substrate surface prior to desorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.