Environmental reservoirs of antibiotic resistance are important to human health, and recent evidence indicates that terrestrial resistance reservoirs have expanded during the antibiotic era. Our aim was to study the impact of Cu pollution as a selective driver for the spread of antibiotic resistance in soil. Bacteria were extracted from a well-characterized soil site solely contaminated with CuSO₄ more than 80 years ago and from a corresponding control soil. Pollution-induced bacterial community tolerance (PICT) to Cu and a panel of antibiotics was determined by a novel cultivation-independent approach based on [³H]bromodeoxyuridine (BrdU) incorporation into DNA and by resistance profiling of soil bacterial isolates on solid media. High Cu exposure selected for Cu-tolerant bacterial communities but also coselected for increased community-level tolerance to tetracycline and vancomycin. Cu-resistant isolates showed significantly higher incidence of resistance to five out of seven tested antibiotics (tetracycline, olaquindox, nalidixic acid, chloramphenicol, and ampicillin) than Cu-sensitive isolates. Our BrdU-PICT data demonstrate for the first time that soil Cu exposure coselects for resistance to clinically important antibiotics (e.g., vancomycin) at the bacterial community-level. Our study further indicates that Cu exposure provides a strong selection pressure for the expansion of the soil bacterial resistome.
Toxic metal pollution affects the composition and metal tolerance of soil bacterial communities. However, there is virtually no knowledge concerning the responses of members of specific bacterial taxa (e.g., phyla or classes) to metal toxicity, and contradictory results have been obtained regarding the impact of metals on operational taxonomic unit (OTU) richness. We used tagcoded pyrosequencing of the 16S rRNA gene to elucidate the impacts of copper (Cu) on bacterial community composition and diversity within a well-described Cu gradient (20 to 3,537 g g ؊1 ) stemming from industrial contamination with CuSO 4 more than 85 years ago. DNA sequence information was linked to analysis of pollution-induced community tolerance (PICT) to Cu, as determined by the [ 3 H]leucine incorporation technique, and to chemical characterization of the soil. PICT was significantly correlated to bioavailable Cu, as determined by the results seen with a Cu-specific bioluminescent biosensor strain, demonstrating a specific community response to Cu. The relative abundances of members of several phyla or candidate phyla, including the Proteobacteria, Bacteroidetes, Verrumicrobia, Chloroflexi, WS3, and Planctomycetes, decreased with increasing bioavailable Cu, while members of the dominant phylum, the Actinobacteria, showed no response and members of the Acidobacteria showed a marked increase in abundance. Interestingly, changes in the relative abundances of classes frequently deviated from the responses of the phyla to which they belong. Despite the apparent Cu impacts on Cu resistance and community structure, bioavailable Cu levels did not show any correlation to bacterial OTU richness (97% similarity level). Our report highlights several bacterial taxa responding to Cu and thereby provides new guidelines for future studies aiming to explore the bacterial domain for members of metal-responding taxa.
Copper has been intensively used in industry and agriculture since mid-18(th) century and is currently accumulating in soils. We investigated the diversity of potential active bacteria by 16S rRNA gene transcript amplicon sequencing in a temperate grassland soil subjected to century-long exposure to normal (∼15 mg kg(-1)), high (∼450 mg kg(-1)) or extremely high (∼4500 mg kg(-1)) copper levels. Results showed that bioavailable copper had pronounced impacts on the structure of the transcriptionally active bacterial community, overruling other environmental factors (e.g. season and pH). As copper concentration increased, bacterial richness and evenness were negatively impacted, while distinct communities with an enhanced relative abundance of Nitrospira and Acidobacteria members and a lower representation of Verrucomicrobia, Proteobacteria and Actinobacteria were selected. Our analysis showed the presence of six functional response groups (FRGs), each consisting of bacterial taxa with similar tolerance response to copper. Furthermore, the use of FRGs revealed that specific taxa like the genus Nitrospira and several Acidobacteria groups could accurately predict the copper legacy burden in our system, suggesting a potential promising role as bioindicators of copper contamination in soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.