The calcium-binding, vertebrate-specific S100 protein family consists of 20 paralogs in humans (referred as the S100ome), with several clinically important members. To explore their protein-protein interactions (PPIs) quantitatively, we have chosen an unbiased, high-throughput, competitive fluorescence polarization (FP) assay that revealed a partial functional redundancy when the complete S100ome (n = 20) was tested against numerous model partners (n = 13). Based on their specificity, the S100ome can be grouped into two distinct classes: promiscuous and orphan. In the first group, members bound to several ligands (> 4-5) with comparable high affinity, while in the second one, the paralogs bound only one partner weakly, or no ligand was identified. Our results demonstrate that FP assays are highly suitable for quantitative interaction profiling of selected protein families. Moreover, we provide evidence that PPI-based phenotypic characterization can complement or even exceed the information obtained from the sequence-based phylogenetic analysis of the S100ome, an evolutionary young protein family.
Annexin A2 (ANXA2) has a versatile role in membrane-associated functions including membrane aggregation, endo- and exocytosis, and it is regulated by post-translational modifications and protein-protein interactions through the unstructured N-terminal domain (NTD). Our sequence analysis revealed a short motif responsible for clamping the NTD to the C-terminal core domain (CTD). Structural studies indicated that the flexibility of the NTD and CTD are interrelated and oppositely regulated by Tyr24 phosphorylation and Ser26Glu phosphomimicking mutation. The crystal structure of the ANXA2-S100A4 complex showed that asymmetric binding of S100A4 induces dislocation of the NTD from the CTD and, similar to the Ser26Glu mutation, unmasks the concave side of ANXA2. In contrast, pTyr24 anchors the NTD to the CTD and hampers the membrane-bridging function. This inhibition can be restored by S100A4 and S100A10 binding. Based on our results we provide a structural model for regulation of ANXA2-mediated membrane aggregation by NTD phosphorylation and S100 binding.
In spite of the fact that structure solving methods are constantly improving, the biggest challenge of protein crystallography remains the production of well diffracting single protein crystals. Full understanding the environmental factors that influence crystal packing would be an enormous task, therefore crystallographers are still forced to work "blindly" trying as many crystallizing conditions and mutations, designed to improve crystal packing, in the sequence of the target protein as possible. Numerous times the random attempts simply fail even when using crystallization robots or recent techniques to determine the optimal mutations. As an alternative option in these cases, crystallization chaperones can be used. These proteins have a unique property, namely they easily form protein crystals, which can be exploited by using them as a heterologous fusion partner to promote crystal contact formation. Today, the most frequently used crystallization chaperone is the maltose-binding protein (MBP) and crystallographers are in need of other options. Our previous results showed the outstanding crystallization properties of a non-EF hand calcium-binding protein annexin A2 (ANXA2). Here, we compared ANXA2 with the wild type MBP and found that ANXA2 is just as good, if not a better crystallization chaperone. Using ANXA2 for this purpose, we were able to solve the atomic resolution structure of a challenging crystallization target, the transactivation domain (TAD) of p53 in complex with S100A4, an EF hand calcium-binding protein associated with metastatic tumors. The full-length TAD forms an asymmetric fuzzy complex with S100A4 and could interfere with its function.
Conformationally flexible protein complexes represent a major challenge for structural and dynamical studies. We present herein a method based on a hybrid NMR/MD approach to characterize the complex formed between the disordered p53TAD 1-60 and the metastasis-associated S100A4. Disorder-toorder transitions of both TAD1 and TAD2 subdomains upon interaction is detected. Still, p53TAD 1-60 remains highly flexible in the bound form, with residues L26, M40, and W53 being anchored to identical hydrophobic pockets of the S100A4 monomer chains. In the resulting "fuzzy" complex, the clamplike binding of p53TAD 1-60 relies on specific hydrophobic anchors and on the existence of extended flexible segments. Our results demonstrate that structural and dynamical NMR parameters (cumulative Δδ, SSP, temperature coefficients, relaxation time, hetNOE) combined with MD simulations can be used to build a structural model even if, due to high flexibility, the classical solution structure calculation is not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.