The phosphoinositide 3-kinase (PI 3-K) signaling axis is intimately associated with deregulated cancer cell growth, primarily by promoting increased survival through Akt/PKB (protein kinase B). However, there is relatively little information on the role of Akt in cancer cell motility, a key phenotype of invasive carcinomas. Here we report that activation of Akt inhibits carcinoma migration and invasion of breast cancer cells. Conversely, downregulation of Akt using RNA interference increased migration and invasion. Akt blunts invasion by inhibiting the transcriptional activity of NFAT (nuclear factor of activated T cells). Specifically, signaling through Akt reduces NFAT expression levels due to ubiquitination and proteasomal degradation, mediated by the E3 ubiquitin ligase HDM2. These results indicate that while Akt can promote tumor progression through increased cell survival mechanisms, it can block breast cancer cell motility and invasion by a mechanism that depends, at least in part, on the NFAT transcription factor.
Proteolysis by the ubiquitin/proteasome pathway controls the intracellular levels of a number of proteins that regulate cell proliferation and cell cycle progression. To determine whether this pathway of protein turnover was also linked to apoptosis, we treated Rat-1 and PC12 cells with specific proteasome inhibitors. The peptide aldehydes PSI and MG115, which specifically inhibit the chymotrypsin-like activity of the proteasome, induced apoptosis of both cell types. In contrast, apoptosis was not induced by inhibitors of lysosomal proteases or by an alcohol analog of PSI. The tumor suppressor p53 rapidly accumulated in cells treated with proteasome inhibitors, as did the p53-inducible gene products p21 and Mdm-2. In addition, apoptosis induced by proteasome inhibitors was inhibited by expression of dominant-negative p53, whereas overexpression of wild-type p53 was sufficient to induce apoptosis of Rat-1 cells in transient transfection assays. Although other molecules may also be involved, these results suggest that stabilization and accumulation of p53 plays a key role in apoptosis induced by proteasome inhibitors.
In the absence of growth factors, many types of mammalian cells undergo apoptosis. We and others have shown recently that growth factors promote cell survival by activating phosphatidylinositol 3-kinase (PI 3-kinase) in several cell types. In the present study, we have compared downstream elements of the apoptotic pathways induced by PI 3-kinase inhibitors and other stimuli. In U937 cells, both PI 3-kinase inhibitors (wortmannin and LY294002) and etoposide activated the CPP32 apoptotic protease by cleavage to active p17 subunits. In contrast, treatment with tumor necrosis factor ␣ (TNF␣) resulted in the accumulation of a distinct active CPP32 subunit, p20. Furthermore, overexpression of Bcl-x L blocked DNA fragmentation, CPP32 activation and cleavage of poly(ADP-ribose) polymerase in U937 cells treated with both PI 3-kinase inhibitors and etoposide, but not in cells treated with TNF␣. Distinct patterns of CPP32 activation and differential sensitivities to Bcl-x L thus distinguish the cell death pathways activated by PI 3-kinase inhibition and DNA damage from that activated by TNF␣.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.