Aerobic methanotrophic bacteria are capable of utilizing methane as their sole energy source. They are commonly found at the oxic/anoxic interfaces of environments such as wetlands, aquatic sediments, and landfills, where they feed on methane produced in anoxic zones of these environments. Until recently, all known species of aerobic methanotrophs belonged to the phylum Proteobacteria, in the classes Gammaproteobacteria and Alphaproteobacteria. However, in 2007-2008 three research groups independently described the isolation of thermoacidophilic methanotrophs that represented a distinct lineage within the bacterial phylum Verrucomicrobia. Isolates were obtained from geothermal areas in Italy, New Zealand and Russia. They are by far the most acidophilic methanotrophs known, with a lower growth limit below pH 1. Here we summarize the properties of these novel methanotrophic Verrucomicrobia, compare them with the proteobacterial methanotrophs, propose a unified taxonomic framework for them and speculate on their potential environmental significance. New genomic and physiological data are combined with existing information to allow detailed comparison of the three strains. We propose the new genus Methylacidiphilum to encompass all three newly discovered bacteria.
Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optimally below pH 5, but some environments with active methane cycles are very acidic. Here we describe an extremely acidophilic methanotroph that grows optimally at pH 2.0-2.5. Unlike the known methanotrophs, it does not belong to the phylum Proteobacteria but rather to the Verrucomicrobia, a widespread and diverse bacterial phylum that primarily comprises uncultivated species with unknown genotypes. Analysis of its draft genome detected genes encoding particulate methane monooxygenase that were homologous to genes found in methanotrophic proteobacteria. However, known genetic modules for methanol and formaldehyde oxidation were incomplete or missing, suggesting that the bacterium uses some novel methylotrophic pathways. Phylogenetic analysis of its three pmoA genes (encoding a subunit of particulate methane monooxygenase) placed them into a distinct cluster from proteobacterial homologues. This indicates an ancient divergence of Verrucomicrobia and Proteobacteria methanotrophs rather than a recent horizontal gene transfer of methanotrophic ability. The findings show that methanotrophy in the Bacteria is more taxonomically, ecologically and genetically diverse than previously thought, and that previous studies have failed to assess the full diversity of methanotrophs in acidic environments.
Samples from diverse upland soils that oxidize atmospheric methane were characterized with regard to methane oxidation activity and the community composition of methanotrophic bacteria (MB). MB were identified on the basis of the detection and comparative sequence analysis of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. MB commonly detected in soils were closely related to Methylocaldum spp., Methylosinus spp., Methylocystis spp., or the "forest sequence cluster" (USC ␣), which has previously been detected in upland soils and is related to pmoA sequences of type II MB (Alphaproteobacteria). As well, a novel group of sequences distantly related (<75% derived amino acid identity) to those of known type I MB (Gammaproteobacteria) was often detected. This novel "upland soil cluster ␥" (USC ␥) was significantly more likely to be detected in soils with pH values of greater than 6.0 than in more acidic soils. To identify active MB, four selected soils were incubated with 13 CH 4 at low mixing ratios (<50 ppm of volume), and extracted methylated phospholipid fatty acids (PLFAs) were analyzed by gas chromatography-online combustion isotope ratio mass spectrometry. Incorporation of 13 C into PLFAs characteristic for methanotrophic Gammaproteobacteria was observed in all soils in which USC ␥ sequences were detected, suggesting that the bacteria possessing these sequences were active methanotrophs. A pattern of labeled PLFAs typical for methanotrophic Alphaproteobacteria was obtained for a sample in which only USC ␣ sequences were detected. The data indicate that different MB are present and active in different soils that oxidize atmospheric methane.Methane (CH 4 ) is present in the atmosphere at a mixing ratio of about 1.7 ppm of volume (ppmv). An estimated 30 Tg of CH 4 from the atmosphere year Ϫ1 is oxidized by aerobic methanotrophic bacteria (MB) in upland soils, accounting for about 6% of the global atmospheric CH 4 sink (21, 31). Bender and Conrad (2) suggested that MB active in upland soils are specialized oligotrophs adapted to the trace level of atmospheric CH 4 and possess a methane monooxygenase (MMO) with a higher substrate affinity than that of cultivated MB. It was later demonstrated that the application of single-reactant Michaelis-Menten kinetics to MMO is not always appropriate and that the apparent affinity for CH 4 varies depending on the cultivation conditions (13). Nevertheless, recent studies indicate that MB in at least some soils that oxidize atmospheric CH 4 are indeed taxonomically distinct from known MB (28).The 13 recognized genera of MB are divided into two groups, type I (further divided into types I and X) and type II. These differ in phylogenetic affiliation (Gammaproteobacteria versus Alphaproteobacteria) and in diverse biochemical characteristics (21). Identification of MB in soils is often performed by the cultivation-independent detection of a fragment of pmoA, a gene encoding the active-site subunit of particulate MMO (22,26,30,35,38). This marker gene is ...
Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 1C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R 2 values up to 0.62 for neutralalkaline springs. The distributions were unimodal, with peak diversity at 24 1C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.