GABA receptors within the mesolimbic circuitry have been proposed to play a role in regulating alcohol-seeking behaviors in the alcohol-preferring (P) rat. However, the precise GABA(A) receptor subunit(s) mediating the reinforcing properties of EtOH remains unknown. We examined the capacity of intrahippocampal infusions of an alpha5 subunit-selective ( approximately 75-fold) benzodiazepine (BDZ) inverse agonist [i.e., RY 023 (RY) (tert-butyl 8-(trimethylsilyl) acetylene-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5a] [1,4] benzodiazepine-3-carboxylate)] to alter lever pressing maintained by concurrent presentation of EtOH (10% v/v) and a saccharin solution (0.05% w/v). Bilateral (1.5-20 microgram) and unilateral (0.01-40 microgram) RY dose-dependently reduced EtOH-maintained responding, with saccharin-maintained responding being reduced only with the highest doses (e.g., 20 and 40 microgram). The competitive BDZ antagonist ZK 93426 (ZK) (7 microgram) reversed the RY-induced suppression on EtOH-maintained responding, confirming that the effect was mediated via the BDZ site on the GABA(A) receptor complex. Intrahippocampal modulation of the EtOH-maintained responding was site-specific; no antagonism by RY after intra-accumbens [nucleus accumbens (NACC)] and intraventral tegmental [ventral tegmental area (VTA)] infusions was observed. Because the VTA and NACC contain very high densities of alpha1 and alpha2 subunits, respectively, we determined whether RY exhibited a "negative" or "neutral" pharmacological profile at recombinant alpha1beta3gamma2, alpha2beta3gamma2, and alpha5beta3gamma2 receptors expressed in Xenopus oocytes. RY produced "classic" inverse agonism at all alpha receptor subtypes; thus, a neutral efficacy was not sufficient to explain the failure of RY to alter EtOH responding in the NACC or VTA. The results provide the first demonstration that the alpha5-containing GABA(A) receptors in the hippocampus play an important role in regulating EtOH-seeking behaviors.
It has been hypothesized that alcohol addiction is mediated, at least in part, by specific gamma-aminobutyric acid(A) (GABA(A)) receptors within the ventral pallidum (VP). Among the potential GABA(A) receptor isoforms regulating alcohol-seeking behaviors within the VP, the GABA(A) alpha1 receptor subtype (GABA(A1)) appears pre-eminent. In the present study, we developed beta-carboline-3-carboxylate-t-butyl ester (betaCCt), a mixed agonist-antagonist benzodiazepine (BDZ) site ligand, with binding selectivity at the A1 receptor to explore the functional role of VP(A1) receptors in the euphoric properties of alcohol. The in vivo actions of betaCCt were then determined following microinfusion into the VP, a novel alcohol reward substrate that primarily expresses the A1 receptor. In two selectively bred rodent models of chronic alcohol drinking (HAD-1, P rats), bilateral microinfusion of betaCCt (0.5-40 microg) produced marked reductions in alcohol-reinforced behaviors. Further, VP infusions of betaCCt exhibited both neuroanatomical and reinforcer specificity. Thus, no effects on alcohol-reinforced behaviors were observed following infusion in the nucleus accumbens (NACC)/caudate putamen (CPu), or on response maintained by saccharin. Parenteral-administered betaCCt (1-40 mg/kg) was equally effective and selective in reducing alcohol-reinforced behaviors in P and HAD-1 rats. Additional tests of locomotor activity revealed that betaCCt reversed the locomotor sedation produced by both chlordiazepoxide (10 mg/kg) and EtOH (1.25 g/kg), but was devoid of intrinsic effects when given alone. Studies in recombinant receptors expressed in Xenopus oocytes revealed that betaCCt acted as a low-efficacy partial agonist at alpha3beta3gamma2 and alpha4beta3gamma2 receptors and as a low-efficacy inverse agonist at alpha1beta3gamma2, alpha2beta3gamma2, and alpha5beta3gamma2 receptors. The present study indicates that betaCCt is capable of antagonizing the reinforcing and the sedative properties of alcohol. These anti-alcohol properties of betaCCt are primarily mediated via the GABA(A1) receptor. betaCCt may represent a prototype of a pharmacotherapeutic agent to effectively reduce alcohol drinking behavior in human alcoholics.
The present study tested the hypothesis that GABA A and opioid receptors within the central nucleus of the amygdala (CeA) regulate ethanol (EtOH), but not sucrose-maintained responding. To accomplish this, bCCt, a mixed benzodiazepine (BDZ) agonist-antagonist with binding selectivity at the a1 subunit-containing GABA A receptor, and the nonselective opioid antagonist, naltrexone, were bilaterally infused directly into the CeA of alcohol-preferring rats. The results demonstrated that in HAD-1 and P rat lines, bCCt (5-60 mg) reduced EtOH-maintained responding by 56-89% of control levels. On day 2, bCCt (10-40 mg) continued to suppress EtOH maintained responding in HAD-1 rats by as much as 60-85% of control levels. Similarly, naltrexone (0.5-30 mg) reduced EtOH-maintained responding by 56-75% of control levels in P rats. bCCt and naltrexone exhibited neuroanatomical and reinforcer specificity within the CeA. Specifically, no effects on EtOH-maintained responding were observed following infusion into the caudate putamen (CPu), a locus several millimeters dorsal to the CeA. Additionally, responding maintained by sucrose, when presented concurrently with ethanol (EtOH) or presented alone, was not altered by bCCt. Naltrexone reduced sucrose-maintained responding only under the 5 mg dose condition when sucrose was presented alone, however, it did not alter sucrose responding when given concurrently with EtOH. These results support the hypothesis that GABA A and opioid receptors within the CeA can selectively regulate EtOH-maintained responding. The CeA may represent a novel target site in the development of prototypical GABA A and opioidergic receptor ligands, which selectively reduce alcohol abuse in humans.
The exact opioid-sensitive receptors participating in EtOH-seeking behaviors remains unclear. Previous studies have reported higher densities of m-opioid receptor binding in the nucleus accumbens (NACC) of P relative to NP rats; however, no differences were seen in d-receptor binding. In contrast to the NACC, substantially lower levels of m-receptor binding have been observed in the ventral tegmental area (VTA) of both P and NP rats, albeit no line differences have been observed. In the present study, opioid receptors in the NACC, VTA, and hippocampus were evaluated for their capacity to regulate both EtOH-and saccharin-motivated behaviors in the genetically selected alcohol-preferring (P) rat. To accomplish this, nalmefene, an opiate antagonist with preferential binding affinity for the m-opioid receptor was unilaterally or bilaterally infused during concurrent availability of 1 h daily EtOH (10% v/v) and saccharin (0.025 or 0.050% w/v) solutions. Rats performed under a two-lever fixed ratio (FR) schedule in which four responses on one lever produced the EtOH solution, and four on a second lever produced the saccharin solution. The results demonstrated that when responding maintained by both EtOH and saccharin are matched at basal levels, unilateral (1-60 mg) or bilateral (0.5-10 mg) microinjections of nalmefene into the NACC produced selective dose-dependent reductions on responding maintained by EtOH. Unilateral (40, 60 mg) and bilateral (10 mg) VTA infusions were also observed to selectively reduced EtOH responding; however, greater nalmefene doses were required and the magnitude of suppression on EtOH responding was markedly less compared with the NACC. The greater sensitivity of nalmefene to suppress EtOH responding in the NACC is likely due to the greater number of opioid receptors in the NACC relative to the VTA. Only bilateral infusion of the 40 mg dose in the NACC and VTA suppressed responding maintained by both EtOH and saccharin. In contrast, intrahippocampal infusions dose dependently suppressed EtOH-and saccharin-maintained responding over a range of doses (1-20 mg). The present study provides evidence that nalmefene suppresses EtOH-motivated behaviors via blockade of opioid receptors within the NACC and VTA, and under various dose conditions both reinforcer and neuroanatomical specificity can be observed.
The results suggest the GABA(A)receptor containing alpha(5)subtype plays an important role in regulating the reinforcing, motor-impairing, and sedative effects of alcohol in outbred rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.