The intraerythrocytic malaria parasite constructs an intracellular haem crystal, called haemozoin, within an acidic digestive vacuole where haemoglobin is degraded. Haem crystallization is the target of the widely used antimalarial quinoline drugs. The intracellular mechanism of molecular initiation of haem crystallization, whether by proteins, polar membrane lipids or by neutral lipids, has not been fully substantiated. In the present study, we show neutral lipid predominant nanospheres, which envelop haemozoin inside Plasmodium falciparum digestive vacuoles. Subcellular fractionation of parasite-derived haemozoin through a dense 1.7 M sucrose cushion identifies monoacylglycerol and diacylglycerol neutral lipids as well as some polar lipids in close association with the purified haemozoin. Global MS lipidomics detects monopalmitic glycerol and monostearic glycerol, but not mono-oleic glycerol, closely associated with haemozoin. The complex neutral lipid mixture rapidly initiates haem crystallization, with reversible pH-dependent quinoline inhibition associated with quinoline entry into the neutral lipid microenvironment. Neutral lipid nanospheres both enable haem crystallization in the presence of high globin concentrations and protect haem from H2O2 degradation. Conceptually, the present study shifts the intracellular microenvironment of haem crystallization and quinoline inhibition from a polar aqueous location to a non-polar neutral lipid nanosphere able to exclude water for efficient haem crystallization.
A method for quantitative analysis of aflatoxin B1-lysine adduct (B1-Lys) in serum by liquid chromatography using tandem mass spectrometry (LC/MS/MS) is presented. The protein in a 250-microL sample was digested in the presence of a stable-isotope internal standard during a 4-h incubation at 37 degrees C with Pronasetrade mark. B1-Lys and the internal standard were extracted using mixed-mode solid-phase extraction cartridges and eluted with 2% formic acid in methanol. Following evaporation and reconstitution, extracts were injected onto a Luna C-18(2) column and eluted with a step gradient of acetonitrile and 0.06% formic acid. The B1-Lys and the internal standard were detected in a positive ionization selective reaction monitoring mode with a ThermoFinnigan TSQ Quantum triple quadrupole mass spectrometer. Calibration curves were linear for concentrations from 0.05-8.0 ng/mL. The method was validated with aflatoxin B1 dosed rat serum diluted to anticipated high and low concentrations. Total imprecision determined from 30 measurements over 15 days was 5.6% and 9.1%, respectively. Recoveries of 78.8 +/- 6.4% for B1-Lys and 85.4 +/- 12.4% for the internal standard were based on the full extraction and reconstitution processes. The method can be used to quantitate B1-Lys at the 0.5 pg/mg albumin level and is suitable for routine analysis.
A novel method for the in vitro detection of the protozoan Plasmodium, the causative agent of malaria, has been developed. It comprises a protocol for cleanup of whole blood samples, followed by direct ultraviolet laser desorption (LD) time-of-flight mass spectrometry. Intense ion signals are observed from intact ferriprotoporphyrin IX (heme), sequestered by malaria parasites during their growth in human red blood cells. The LD mass spectrum of the heme is structure-specific, and the signal intensities are correlated with the sample parasitemia (number of parasites per unit volume of blood). Parasitemia levels on the order of 10 parasites/microL blood can be unambiguously detected by this method. Consideration of laser beam parameters (spot size, rastering across the sample surface) and actual sample consumption suggests that the detection limits can be further improved by at least an order of magnitude. The influence of experimental factors, such as desorbed ion polarity, laser exposure and fluence, sample size, and parasite growth stage, on the threshold for parasite detection is also addressed.
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B 1 . In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r 2 = 0.95) and 3.3 (r 2 = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen. (Cancer Epidemiol Biomarkers Prev 2008;17(7):1653 -7)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.